
USING SAS AT NIH - ON THE MAINFRAME
BATCH MODE

Batch mode on the mainframe is a method of running SAS programs in which you prepare a
file containing SAS statements and the necessary operating system control statements.
While the program executes, control returns to the terminal or workstation environment
where you can perform other tasks. Batch mode is sometimes referred to as "running in
the background". The job output can be written to files or printed on an output device.

Office of Computing Resources and Services/SSS
Center for Information Technology
National Institutes of Health
Bethesda, Maryland 20892

Contents
Pages

CIT Services and Resources 1-2

SSooffttwwaarree SSuuppppoorrtt oonn VVaarriioouuss CCoommppuuttiinngg PPllaattffoorrmmss 3-4

Description of SAS Products 5-6

AA GGlloossssaarryy ooff TTeerrmmss aanndd AAccrroonnyymmss UUsseedd iinn tthhiiss HHaannddoouutt 7

NIH Computer Center’s System Manage Storage(SMS) Environment 8
Commonly Used WYLBUR commands to manage WYLBUR files

NNIIHH CCoommppuutteerr CCeenntteerr iiss aa SSttaannddaarrdd--LLaabbeelleedd TTaappee FFaacciilliittyy 9

NIH Computer Center’s WYLBUR Data Sets
Edit Format 10
LRECL Format 11

SSAASS RReeaaddss RRaaww DDaattaa wwiitthh LLRREECCLL FFoorrmmaatt oonn tthhee DDiisskk aanndd tthhee MMSSSS 12

Estimate LRECL, BLOCKSIZE and SPACE Requirements 13
WYLBUR ENTER DISKCALC Command

EEssttiimmaattee tthhee SSiizzee ooff aa SSAASS DDaattaa SSeett 14

Invoking a SAS Session on the NIH Mainframe 15
Batch Mode
Interactive Mode

AA SSaammpplliinngg ooff JJCCLL SSttaatteemmeennttss UUsseedd iinn SSAASS PPrrooggrraammss
IInnppuutt SSaammpplleess 16-19
OOuuttppuutt SSaammpplleess 20-24

Access SPSS, BMDP, and DB2 Files
Access SPSS from SAS 25
Access BMDP from SAS 26
Access DB2 Files 27-33

PPRROOCC BBMMDDPP PPrroocceedduurree 34-36

PROC CONVERT Procedure 37

TTrraannssppoorrttiinngg SSAASS FFiilleess BBeettwweeeenn OOppeerraattiinngg SSyysstteemmss 38-39

A Sampling of Programs to Create and Import SAS Transport Files 40-42

Contents Pages

 A Sampling of Programs to Transfer SAS Transport Files Between 43-46
Operating Systems

Download SAS Library 43
Download SAS member-type CATALOG 44
Upload SAS Library 45
Upload SAS member-type CATALOG 46

HHooww ttoo…… TTrr aannss ff oorr mm SSAASS DDaatt aa SSeett oonn MMVVSS tt oo SSPPSSSS ff ii ll ee oonn PPCC 47
Download an SPSS portable file to the PC 48

How to… Transform SPSS File on PC to a SAS Data Set on MVS 49-50
Upload an SPSS portable file to MVS 49
Convert standard SPSS file to a SAS data set on MVS 50

HHooww tt oo…… CCooppyy SSAASS DDaatt aa SSeett ss ff rr oomm oonnee ss tt oorr aaggee ddeevv ii cc ee tt oo aannoott hheerr 5511

How to… Convert a version 5 SAS Library to version 6 52

How to… Convert a version 6 SAS Library to version 5 53

PROC SORT - Sorting Permanent SAS Data Sets 54

PPRROOCC CCOONNTTEENNTTSS aanndd PPRROOCC DDAATTAASSEETTSS PPrroocceedduurreess 55-57

PROC CONTENTS procedure 55
PPRROOCC DDAATTAASSEETTSS PPrroocceedduurree 56

CONTENTS, CHANGE, DELETE statements 57

SAS Format Library 58

AA SSaammpplliinngg ooff PPrrooggrraammss ttoo CCrreeaattee,, UUssee aanndd CCoonnvveerrtt SSAASS FFoorrmmaatt LLiibbrraarriieess 59

A Sampling of Programs to Create, Use and Convert Version 5 SAS 60
Format Libraries

HHooww ttoo…… TTrr aannss ff oorr mm VVeerr ss ii oonn 55 SSAASS FFoorr mmaatt LLii bbrr aarr ii eess tt oo VVeerr ss ii oonn 66 61
aanndd DDoowwnnll ooaadd tt oo PPCC EEnnvv ii rr oonnmmeenntt

PROC Catalog Procedure 62
How to… Add to or modify a SAS Format Library 62
How to… Combine SAS Format Libraries 62
How to… Use permanent SAS format library 63

PPRROOCC PPRRII NNTTTTOO PPrr oocc eedduurr ee 64

Efficient SAS Programming - A Few Tips 65-66
Use the LENGTH Statement to Reduce the Storage Space

HHooww tt oo II nnvv ookk ee tt hhee SSAASS MMaacc rr oo FFaacc ii ll ii tt yy 67

How to Use Curly Braces in a SAS Program at NIH 68

1

CIT Services and Resources
CIT’S central point of contact is the Technical Assistance and Support Center (TASC) of the
Customer Services Branch (CSB), which provides technical and informational support to the
NIH computing community and to CIT’S customers in other Federal agencies. The
TASC help desk is staffed with full-time computer specialists. Users may also submit
electronic mail and voice mail messages 24 hours a day and TASC will respond during regular
operating hours.

TASC provides customer support for:

(1) MVS Systems

• Please refer to Interface 206, June 15, 1998, " The Evolution of WYLBUR"
and "Planning is Underway for an MVS Standard System"

• MVS/ESA operating systems for both the MVS North and South systems
• North System (formerly ITS at the Parklawn Building)

The North MVS System software includes JES2, TSO, ISPF, ACS, ACS WYLBUR, Model204, and
relational databases.

• South System (formerly the MVS component of the NIH Computer Center)

This MVS component of the Enterprise Systems at the Computer Center is based on the IBM
MVS/ESA (Multiple Virtual Storage/Enterprise System Architecture) Operating System with JES2
Multi-Access Spool.

The MVS System customer service areas include:
Processing Tasks

• access to batch processing
 as well as interactive systems(e.g., WYLBUR, ISPF, CICS, TSO)
• language compilers
• custom printing
• automatic data backup for desktop computers
• data security protection
• disaster recovery planning
• remote job entry

Connectivity Products for Access to the MVS System
• Terminal emulation and full connectivity software for PC and Macintosh clients
 for telnet and dialup connections.
• Supported software packages include MS-Kermit, PROCOMM PLUS, VersaTerm, PC/TCP
 and OnNet, and the Protocol Conversion Facility.

Networks

• NIHnet, a high-speed network backbone that interconnects NIH Ethernet
 LANs, the Computer Center mainframes (MVS and Helix Systems), and the
 Internet.
• LAN protocols supported for NIHnet connectivity are TCP/IP, AppleTalk, IPX, XNS,
 and DECnet.
• Dialup access to NIHnet is available through PARACHUTE
• Internet - and international collection of networks supported by major research
 institutions, which communicate with each other using TCP/IP protocols.
 The Internet offers file transfer, remote login(telnet) and mail services.

Call: 4-DCRT (301-594-3278)
E-mail: 4DCRT@nih.gov
Fax: 301-402-7349
TDD: 301-496-8294
Visit: Building 12A, Room 1011

Monday through Friday
7:30 A.M. to 5:00 P.M.

Mail: 12 South Drive MSC 5605
Bethesda, MD 20892-5605

World Wide Web access to CIT through the URL: http://www.cit.nih.gov/

2

SILK Web Facilities

• The SILK (Secure Internet LinKed) Web technologies allow users to create and run
 their own Web servers using NIH Computer Center hardware and software.

Relational Database Systems

• DB2
• Oracle - Oracle RDBMS on the MVS and the Oracle server Digital AlphaServer 8400

IMS • An information management system for interactive interrogation and maintenance
 of large centralized data bases(restricted access).

System Tape Library via MVS on the IBM
• The Tape Library, located in Building 12, Room 1100, maintains a
 large supply of magnetic tapes for use with MVS.
 The Tape Library may be contacted at (301) 496-6021.

Digital AlphaServer 8400

• Another component of the Enterprise Systems provides the base for a new
 environment for client/server(i.e. Unix-based) applications.

(2) Advanced Laboratory Workstation (ALW) System

(3) Helix Systems

• Helix - a network communication system
• Convex - a computation server which runs scientific applications
In addition to the standard UNIX tools for software development, text
formatting, and network communications, software packages include:

- Scientific Applications: GCG Sequence Analysis Package, Quest, BLAST,
 CHARMm, Gaussian, Mathematica, Prophet
- Biological Databases: GenBank, PIR, GCG, PDB
- Subroutine Libraries: IMSL - Mathematical and statistical routines
- Programming Languages: C and FORTRAN, Pascal, LISP, and C++

(4) Computer Training
The CIT Computer Training offers a wide variety of courses that enable users to make
efficient and effective use of computing, networking, and information systems in their work.
The training program is open to NIH employees and to all users of the CIT computing
facilities. Course information and registration is available through CIT Home Page of the
World Wide Web at http://livewire.nih.gov/training/lookup.asp

(5) Scientific Computing Resource Center (SCRC)
The Scientific Computing Resource Center is a shared-use computing facility for the hands-on
evaluation and use of scientific software by NIH researchers.

(6) Customer Accounts
The Customer Account Office provides account and registration services to the NIH
community and to customers in many other Federal agencies.

(7) Publications, Documentation and Software Distribution
CIT distributes publications and software to our customers. Documentation can be
ordered by contacting TASC or online services through WYLBUR ENTER PUBWARE command
or the Helix PUBWARE command.

More detail information on the Enterprise Systems is available on the World Wide Web at http://cfb.dcrt.nih.gov/enterprise.html
To solve any problem you encounter when using the MVS System you may submit a PTR (Problem
Tracking and Report System) through one of the following:

• WYLBUR ENTER PTR command
• World Wide Web access at http://cfb.dcrt.nih.gov/ptr.html
• E-mail to ptr@cu.nih.gov

3

(8) Statistical Support Staff provides technical support to NIH employees and
 all users of the Center for Information Technology(CIT) computing
 facilities. Web site: http://statsoft.nih.gov/

The Statistical Support Staff provides the following services: statistical advice,
assistance on the interpretation of results, technical help on the use of the
supported software, documentation for the supported software, training
through the CIT Computer Training Program, access to the SAS Software for Windows,
Mac and OS/2 through an NIH site license

You can contact the Statistical Support Staff at 301-594-3278(4-DCRT)
or send e-mail to 4dcrt@nih.gov.
Help is available Monday through Friday from 8:30 a.m. to 5:00 p.m.

Software Support on Various Computing Platforms

1) MVS/ESA Operating System
SAS/TUTOR Online Training Library, Base SAS, SAS/STAT, SAS/GRAPH, SAS/ETS, SAS/OR,
SAS/FSP, SAS/AF, SAS/IML, SAS/ASSIST, SAS/CONNECT, SAS/INSIGHT, SAS/CALC, SAS/QC,
SAS/TOOLKIT, SAS/ACCESS-DB2, SAS/ACCESS-ORACLE, SAS/SHARE

BMDP
A data analysis program library. Its programs perform descriptive statistics, tests for
means, linear and nonlinear regression, log-linear models, maximum likelihood estimation,
multivariate analysis, cluster analysis, survival analysis, and time series analysis.

SPSS
Provides capabilities for extensive file handling and data management tasks. Includes
advanced statistical analysis procedures such as discriminant analysis, nonlinear and
logistic regression analysis, and multivariate analysis of variance.

IMSL
This product is an extensive collection of FORTRAN-callable subroutines from Visual
Numerics Inc. These routines perform mathematical and statistical computations.

GLIM
A system from the Numerical Algorithms Group Inc. for analysis of linear statistical
models that can run in batch or interactive mode.

MSTAT1
This is a small collection of programs and subroutines for mathematical and statistical
analysis. These programs were developed by CIT to run in batch mode.

LISREL
A program used to estimate the unknown coefficients of a set of linear structural
equations.

4

2) SAS System Software for Windows, Macintosh, and OS/2 is available to National Institutes
of Health personnel through a site license between NIH/CIT and SAS Institute Inc.
NOTE:
Request for PC, Mac, or OS/2 SAS System Software must be made to the Technical
Information Office. Please call 301-594-3278(4-DCRT).

SAS products available on Windows, Macintosh, or OS/2 through this site license are:

SAS/TUTOR Online Training Library (only CBT101), Base SAS, SAS/STAT, SAS/GRAPH, SAS/FSP,
SAS/AF, SAS/IML, SAS/ASSIST, SAS/CONNECT, SAS/INSIGHT, SAS/CALC, SAS/EIS, SAS/LAB,
SAS/ACCESS Interface to PC File Formats, SAS/ACCESS Interface to ODBC Software, SAS/QC,
SAS/OR, SAS/ETS.

New to SAS System for the Windows, Mac, and OS/2 environments is the support for ODBC.
ODBC is software architecture developed by Microsoft that provides a common Application
Programming Interface (API). ODBC is a Microsoft standard to allow software packages that
are compliant with the ODBC specifications to exchange information. Through the use of
the ODBC engine, compliant software packages such as Lotus 1-2-3, Excel, Paradox, and
others can now extract information directly from SAS data sets.

SAS/ACCESS Interface to PC File Formats provides an interface to PC software
products. SAS System can be used to analyze and present data directly from
popular PC file formats like dBase, DIF, LOTUS 1-2-3, and Microsoft Excel.

SAS/ACCESS Interface to ODBC provides all the power and flexibility of the SAS System
that one can use to analyze and present data directly from mainframe platforms, UNIX and
popular PC file formats.

3) ALW System
 Base SAS, SAS/STAT, SAS/GRAPH, SAS/FSP, SAS/IML, SAS/CONNECT and SAS/INSIGHT

4) Helix System(Convex server) and PC
IMSL - Mathematical and statistical routines

5) SUDAAN
SUDAAN 7.50 for Windows can be installed as a ’stand-alone’ or as a ’SAS-callable’.
SUDAAN is a single program consisting of a family of procedures used to analyze data from
complex surveys and other observational and experimental studies involving cluster-
correlated data. A complex sample may be multistage, stratified, or clustered. Many
samples also have unequal probabilities of selection, or are drawn from finite
populations. SUDAAN enables you to use survey data to obtain consistent estimates of
population parameters and their standard errors in accordance with the sample designs.
SUDAAN also produces consistent estimates of regression coefficients, descriptive
statistics, and their associated standard errors for cluster-correlated and repeated
measure data applications in clinical, epidemiological, toxicological, and behavioral
research.

5

Description of SAS Products

To provide the most effective response to your SAS questions and problems, the
Statistical Support Staff offers support for the following SAS products.
SAS/TUTOR Online Training Library:
Learn the SAS System as you use the SAS System with SAS Institute’s library of
online training courses. The SAS/TUTOR library on the mainframe currently includes
six highly interactive courses. For more information, please see the CIT Computer
Training brochure or call 301-594-3278.

BASE SAS:
This is the core of the SAS System. It is required for all other SAS System
products. It contains the DATA step and the fundamental procedures that are needed
for working with SAS data sets.

SAS/STAT:
Provides procedures for regression analysis, analysis of variance, categorical data
analysis, multivariate analysis, discriminant analysis, scoring procedures, and
survival analysis.

SAS/GRAPH:
Produces high-resolution graphics including several kinds of plots and charts,
geographic maps, and a number of three-dimensional graphs.

SAS/ETS:
Provides procedures for time series analysis, financial report writing, linear and
nonlinear systems modeling, and forecasting.

SAS/OR:
Provides a set of procedures for operations research and project management.
Included in its capabilities are linear programming, Gantt charts, activity
networks, and decision analysis.

SAS/FSP:
A component of the SAS System that provides interactive facilities for data entry,
editing, and retrieval, printing form letters and reports, browsing external files,
and building data entry and editing applications. SAS/FSP
includes several procedures and a programming language (SAS Screen Control
Language) for building applications. Screen Control Language (SCL) is used to write
instructions that control how an application responds to user actions.

SAS/AF:
This is an interactive applications development facility that enables programmers
to create interactive windowing applications. It consists of a developmental
environment that includes, PROC BUILD, a programming language (SAS Screen Control
Language), and an interactive full-screen debugger. Screen Control Language (SCL)
is used to write instructions that control how an application responds to user
actions. Object-Oriented FRAME entries, a new component of SAS/AF software enables
the developers to build SAS/AF applications as graphical user interfaces. A set of
predefined graphical and text objects can be used to design or paint each
application window.

6

SAS/ASSIST:A windowing facility that lets the user run the SAS System by making
selections from a series of menus. Enables users to utilize SAS with very little
SAS training.

SAS/CONNECT:
Enables communications between SAS Systems running on multiple remote hosts.

SAS/INSIGHT:
Explore data analysis through a variety of interactive graphic displays.

SAS/CALC:
A interactive windowing environment that enables you to create electronic
spreadsheets. You use SAS/CALC software to enter data into a spreadsheet, define
formulas to compute values, generate reports and graphics, create SAS data sets,
and fetch data from SAS data sets.

SAS/QC:
Provides specialized tools for quality control and design of experiments.

SAS/TOOLKIT:
Used to write SAS procedures, functions, CALL routines, formats, and informats.

SAS/SHARE:
This product allows concurrent access to SAS data sets for reading and updating.
With SAS/SHARE, multiple users can gain simultaneous update access to SAS files.

SAS/IML:
An interactive matrix facility with an extensive set of mathematical and matrix
operators.

SAS/ACCESS - DB2:
The SAS/ACCESS interface to DB2 can be used to analyze and present data directly
from DB2.

SAS/ACCESS - Oracle:
The SAS/ACCESS interface to ORACLE can be used to analyze and present data directly
from ORACLE.

7

A Glossary of Terms and Acronyms Used in this Handout

Job Control Language (JCL) is a stream of statements used in batch mode to identify
your job to the operating system and inform the operating system of the resources
such as data sets, time, and memory that your job needs. JCL must be typed in upper
case, begin in column 1, and extend no farther than column 71.
A job submitted to the operating system for batch processing begins with a JCL JOB
statement and ends with a JCL SYSIN (//SYSIN DD *) statement

JCL JOB statement: //iii JOB (aaaa,box,class,cpu,lines),lastname
where the words shown in lower case are replaced with the user’s information:

iii registered initials box box number(optional)
aaaa CIT user account class job class
lastname user’s last name cpu cpu time(optional)

lines maximum lines(optional)

The job class determines the resources needed for the job. Small jobs not requiring
tapes (but possibly using the Managed Storage System (MSS)) get fast turnaround
time from class A or class E. Class B or C is needed to mount a tape. Other
parameters, such as maximum CPU time or maximum lines, may appear after the job
class. For more details, see the Computer Center User’s Guide, and Batch
Processing and Utilities at NIH available from the Technical Information Office.

DD statement a data definition statement that describes an operating
system data set to the operating system, including the
resources needed for the data set. The way the program can
use a data set depends on the parameters in the DD statement.

ddname a name(single word of user’s choice) defined by a JCL DD
statement. The ddname is how the operating system references the
file. The ddname can contain one to eight characters; the first
character must be a letter or a national character.

libref the name used to identify a SAS data library to the SAS System.
You assign a libref with a LIBNAME statement or with the ddname
in the DD statement. The libref is the first-level name of a two-
level name. For example, PERM is the libref in the two-level name
PERM.CLASS.

fileref the name used to identify an external file to the SAS System. You
assign a filref with a FILENAME statement or with the ddname in
the DD statement. The ddname and the fileref are the same. The
fileref is how the SAS System references the file; the ddname is
how the operating system references the file.

The fileref or the libref must be a valid SAS name to ’link to’ or to ’point
to’ the file.

dsname operating system data set name
nnnnnn serial number of a tape
seqnum sequence number of a data set on tape(default is 1)
lab type of label on tape (SL, NL, AL--default is SL)
len maximum line length (used in the LRECL=parameter)
b block size (used in the BLKSIZE= parameter)
s1 primary space allocation (used in the SPACE= parameter)
s2 secondary space allocation (used in the SPACE= parameter)

8

NIH Computer Center’s System Managed Storage(SMS) Environment

The SMS environment operates within an all-cataloged public disk storage
environment. The direct access storage is on RAMAC (3390)online disks. The various
types of storage have different restrictions on the length of storage time and
backup service. The FILE and TMP management classes provide permanent and short-
term storage for most data sets. The MSS management class provides slightly less
expensive storage for data sets that do not require backup.

Commonly used WYLBUR commands to manage WYLBUR files:

SHOW DSNAMES ON CATALOG - searches the user’s catalog and lists the user’s
cataloged data sets and the management class on which
it resides.

SHOW DSNAMES ON CATALOG FULL - searches the user’s catalog and lists the
user’s cataloged data sets, the management class and
the actual volser, BLKSIZE, LRECL, DSORG, RECFM,
SPACE and RACF protection information for the data
sets.

SHOW DSNAMES ON FILE - searches the user’s catalog and lists the user’s
cataloged data sets on the FILE management class.

SHOW DSNAMES ON MSS - searches the user’s catalog and lists the user’s
cataloged data sets on the MSS management class.

SHOW DSNAME dsname - determine if a data set on the disk is stored in
EDIT format

Changing Management Classes with SMS:
Another practical feature introduced with SMS managed data sets is the ability to
switch a data set from one management class to another without having to physically
move or copy the data set.

General Form of the TSO command:
ALTER ’aaaaiii.dsname’ MANAGEMENTCLASS(class-name)

Specify TMP or MSS or FILE for class-name.

For example, enter the following TSO command:

ALTER ’aaaaiii.ONE’ MANAGEMENTCLASS(MSS)

… puts data set ONE into the MSS management class

or

ALTER 'aaaaiii.TWO' MANAGEMENTCLASS(FILE)

… puts the data set TWO into the FILE management class.

Consequently, just the class is changed.

9

NIH Computer Center is a Standard-Labeled Tape Facility

The standard-labeled tape 3480 cartridge tape is the NIH Computer Center’s standard
tape. This tape has 18 tracks and stores information at 38,000 BPI. If you are
interested in using another type of tape, refer to the Computer Center’s User
GUIDE.

Because tape drives are not available on all of the Computer Center’s subsystems, a
/*ROUTE XEQ statement must be included in any job that uses a tape.

General Form: /* ROUTE XEQ resource-name

where "resource-name" is a name specifying the type of tape drive
required

Whenever a job uses a preassigned NIH tape or a Special tape, the volume serial
number must be included on a /*MESSAGE statement

General Forms: /* MESSAGE nnnnnn,R
/* MESSAGE nnnnnn,w
/* MESSAGE nnnnnn,S

"nnnnnn" is the volume serial number of the tape requested
"R" reading only
"W" writing only
"S" is included only for (non-NIH) tapes.

Please refer to the document titled USING TAPES AT NIH. This manual is written to
provide guidelines for using tapes on the IBM System at NIH

To have a tape assigned, call the Information Media Library at (301)496-6021.

10

NIH Computer Center’s WYLBUR Data Sets

WYLBUR data sets are stored in one of two formats on the disk and the MSS.

EDIT format or LRECL format:

EDIT FORMAT
The EDIT format is the standard format used by WYLBUR to store data sets.
EDIT format WYLBUR data sets are compressed to save space, while LRECL format data
sets are not. EDIT format is the default storage format. If a WYLBUR data set is
saved using the WYLBUR SAVE command, it is stored in EDIT format.

 ? SAVE AS dsname

EXAMPLE:

 ? COLLECT CLEAR
 1. ? 4 5
 2. ? 0 1
 3. ? 2 6
 ? ***
 ? SAVE AS RAWDATA1
 ’RAWDATA1’ SAVED AND CATALOGED ON FILE

To determine if a WYLBUR data set on the disk is stored in EDIT format, use
WYLBUR’s SHOW DSNAME command.

 ? SHOW DSNAME dsname

EXAMPLE:

 ? SHOW DSNAME RAWDATA1
 FILE

 RAWDATA1 ON DSA106

UNIT=FILE, DEVTYPE=3010200F, NO. OF VOLUMES=1
 CREATED 06/03/97, LAST USED 06/03/97
 1 TRACK (1 USED), NO. OF AREAS=1, SECONDARY SPACE=1 TRACK
 DSORG=PS, RECFM=U, LRECL=11476, BLKSIZE=11476
 KEYLEN=0, RKP=0, OPTCD=C(20)
 EXPIRATION DATE=00/00/00, NO PASSWORD

If the WYLBUR data set is stored in EDIT format, this command will report
RECFM=U, LRECL=11476, and BLKSIZE=11476.

To determine if a WYLBUR data set on the MSS is stored in EDIT format, use WYLBUR’s

 ? SHOW DSNAME dsname on MSS

If the WYLBUR data set is stored in EDIT format, this command will report
RECFM=U, LRECL=11476, and BLKSIZE=11476.

11

LRECL Format

To save a WYLBUR data set on the disk in LRECL format, add the LRECL option to
WYLBUR’s SAVE command.

 ? SAVE AS dsname LRECL=len
where ’len’ is greater than or equal to the length of the longest data line.

EXAMPLE:

 ? COLLECT CLEAR
 1. ? 4 5
 2. ? 0 1
 3. ? 2 6
 ? ***
 ? SAVE AS RAWDATA1 LRECL=6
 ’RAWDATA1’ SAVED AND CATALOGED ON FILE

To determine if a WYLBUR data set on disk is stored in LRECL format, use WYLBUR’s
SHOW DSNAME command.

EXAMPLE:

 ? SHOW DSNAME RAWDATA1
 FILE

 RAWDATA1 ON DSA106

UNIT=FILE, DEVTYPE=3010200F, NO. OF VOLUMES=1
 CREATED 06/03/97, LAST USED 06/03/97
 1 TRACK (1 USED), NO. OF AREAS=1, SECONDARY SPACE=1 TRACK
 DSORG=PS, RECFM=FB, LRECL=6, BLKSIZE=11472

KEYLEN=0, RKP=0, OPTCD=C(20)
 EXPIRATION DATE=00/00/00, NO PASSWORD

12

SAS Reads Raw Data with LRECL Format on the Disk and the MSS
SAS does not read raw data files saved in EDIT format. Therefore, if your data set
is saved in EDIT format, you will need to apply one of the following:1) Use
WYLBUR’s USE FROM and RESAVE commands on the data set
 ? USE FROM dsname
 ? RESAVE LRECL=len

where ’len’ is greater than or equal to the length of the longest data line.

OR

2) Include the EDSIN utility in the JCL

a) Reading raw data on the disk or the MSS in EDIT format with data lines not
extending past column 80

 // EXEC EDSIN,NAME=’aaaaiii.dsname’
 // EXEC SAS
 //ddname DD DSN=&INPUT,DISP=(OLD,DELETE)

b) Reading raw data on the disk or the MSS in EDIT format with data lines
extending past column 80

 // EXEC EDSIN,NAME=’aaaaiii.dsname’,LRECL=len,BLKSIZE=b
 // EXEC SAS
 //ddname DD DSN=&INPUT,DISP=(OLD,DELETE)

In this instance the block size (BLKSIZE) and logical record length (LRECL)
must be determined.

13

Estimate LRECL, BLOCK SIZE and SPACE Requirements

To output raw data from SAS, the logical record length, block size, and space allocations
must be determined.
• secondary space allocation (’s2’) can be 1 or approximately 10% of the primary space
allocation(’s1’).

• LRECL equal to an integer greater than or equal to the length of the longest record.

Example: Compute BLKSIZE… given LRECL=133 and output 500 records to a raw data file.

WYLBUR’s ENTER DISKCALC Command

? Enter Diskcalc

DISKCALC Command Procedure:

Select a function from the following menu (or strike ENTER):
(For fixed length, NON-keyed data sets)
(Function 2 is applicable to all data set types)
1 What is the Computer Center recommendation for BLKSIZE for a given LRECL?

2 Compute how many physical records (blocks) may be stored on a track or cylinder with a given
BLKSIZE.

3 Show records and blocks per track and cylinder for a selection of possible BLKSIZES for a given
LRECL.

4 Compute total space needed to contain a specified number of records of a given LRECL for a
selection of possible BLKSIZES.

5 Change default disk model (currently 3390-3, 3,339 cylinders per volume, 15 tracks/cylinder,
56,664 bytes per track).
END Return to WYLBUR.

Select a function (or press ENTER to see the function menu): 4Enter the LRECL (logical record
length) of the record (or press Enter):
LRECL: 133

Enter the number of logical records (or press ENTER):
Number of records: 500
(press ENTER)

Space required for 500 records with LRECL=133 on a 3390-3 volume which contains approximately
3,339 cylinders per volume.

 Number of Number of
 BLKSIZE Tracks Cylinders

 3,724 2
 4,123 2
 4,522 2
 5,054 2
 5,719 2
 6,517 2
 7,448 2
 8,778 2
 10,773 2
 13,566 2 <=NIH Recommendation
 18,354 2
 27,930 2
 Select a function (or press ENTER to see the function menu): END

DISKCALC terminating.

Result: NIH’s recommendation is: LRECL=133, BLKSIZE=13,566.

14

Estimate the Size of a SAS Data Set

When storing a SAS data set, the record format (FB), the logical record length
(LRECL), and block size (BLKSIZE) are set automatically.
However, you must determine the space allocation.
General Form of the SPACE parameter: SPACE=(TRK,(s1,s2),RLSE)

Space can be requested in terms of tracks or cylinders.
TRK specifies that the space is to be allocated in units of tracks.
CYL specifies that the space is to be allocated in units of cylinders.
(15 tracks per cylinder.)
RLSE indicates that space not used by the WYLBUR data set is to be

released; RLSE should be specified whenever possible.

You can follow these steps to obtain a rough estimate of how much space you need on
the disk or the MSS to store SAS data sets.

Step 1. To determine the length of each variable in the SAS data set, create a SAS
data set that contains 1 observation.
FILENAME IN1 ’aaaaiii.dsname’ ;
DATA TEST;

INFILE IN1 obs=1 ;
INPUT variable list ;

PROC CONTENTS;

Step 2. Based on the results of the PROC CONTENTS procedure, determine the total
length of all variables for each obseration.
(Length of each variable can range from 2 to 8 for numeric variables and from 1 to 200 for
character variables.)

Step 3. Apply the following formula to estimate the primary space parameter.

Let X = (total length of all variables)*(total number of observations)
(The "total length of all variables" is specified as the "observation length" in the PROC
CONTENTS Output.)

Let Y1 = X/6144. Let Y2 be Y1 rounded up to the next integer.
Let Z = Y2/7. The primary space allocation ’s1’ is Z rounded up to

the next integer.

Example:
Suppose you have 12 numeric variables (each stored in 8 bytes) and 5000
observations.

 X = 8*12*5000 = 480,000
 Y1 = 480,000/6144 = 78.125
 Y2 = 79
 Z = 79/7 = 11.29
 s1 = 12 tracks

Result: SPACE=(TRK,(12,1),RLSE).

A ’rule of thumb’
The primary space parameter(’s1’) - set as the larger of the two parameters.
The secondary space parameter (’s2’) - set approximately 10% of the primary space
allocation(10% of the ’s1’ parameter).

15

Invoking SAS on the Mainframe at NIH

1. Batch Mode
When a SAS program is submitted to the MVS operating system for batch processing
the SAS program begins with the Job Control Language (JCL).

SAS Version 6 is the default MVS version of SAS at NIH. Therefore, the following
EXEC statement is used to invoke SAS

// EXEC SAS

The following JCLLIB statement is required to ’link’ the SAS procedures located in
our private library of cataloged procedures.

// JCLLIB ORDER=ZABCRUN.PROCLIB

Example:
The JCL statements used to submit a SAS program for batch processing when the input
data immediately follows a CARDS statement in the SAS program.

// (JOB statement)
// JCLLIB ORDER=ZABCRUN.PROCLIB
// EXEC SAS
//SYSIN DD *

DATA TEST;
 INPUT variable list ;
CARDS;
(data lines)
;

When submitting a SAS program for batch processing, be sure to specify the
UNNUMBERED option of WYLBUR’s RUN command.

For instance...Use the following WYLBUR command

 ? RUN UNN HOLD NOTIFY

2. Interactive Mode

The SAS Display Manager System is an interactive, windowing environment in which
actions are performed with a series of commands or function keys. It can be used to
prepare and submit SAS programs, view and print the results, and debug and resubmit
the programs.
This requires full-screen access to the MVS operating system. The full screen
access can be accomplished through TN3270 or NIHnet 3270 Protocol Converter to the
MVS System.

To initiate an interactive SAS session on the mainframe you issue the following
command at the TSO (READY) prompt

H[�
]DEFUXQ�VDV�FOLVW�VDV�

16

A Sampling of JCL Statements Used in SAS Programs

This section was put together to answer the most frequently asked questions about
getting started with the SAS System and batch processing on the MVS operating
system at NIH.

Input Samples

1. Read raw data when the input data immediately follows a CARDS statement in
the SAS program

// (JOB statement)
// JCLLIB ORDER=ZABCRUN.PROCLIB
// EXEC SAS
//SYSIN DD *

DATA TEST;
INPUT variable list ;
CARDS;
(data lines)
;

2. Read raw data on disk and on the MSS in LRECL format

• Or with the JCL DD statement

 // (JOB statement)
 // JCLLIB ORDER=ZABCRUN.PROCLIB
 // EXEC SAS
 //ddname DD DSN=aaaaiii.dsname,DISP=SHR
 //SYSIN DD *

DATA TEST ;
 INFILE ddname ;
 INPUT variable list ;

 • Or with the FILENAME statement

 // (JOB statement)
 // JCLLIB ORDER=ZABCRUN.PROCLIB
 // EXEC SAS
 //SYSIN DD *

FILENAME filref ’aaaaiii.dsname’ ;
DATA TEST;
 INFILE fileref ;
 INPUT variable list ;

• without the FILENAME statement or the JCL DD statement

// (JOB statement)
 // JCLLIB ORDER=ZABCRUN.PROCLIB
 // EXEC SAS
 //SYSIN DD *

DATA TEST;
 INFILE ’aaaaiii.dsname’ ;
 INPUT variable list ;

17

3. Read raw data on disk and the MSS in EDIT format when data lines do not
extend past column 80

// (JOB statement)
 // JCLLIB ORDER=ZABCRUN.PROCLIB
 // EXEC EDSIN,NAME=’aaaaiii.dsname’
 // EXEC SAS
 //ddname DD DSN=&INPUT,DISP=(OLD,DELETE)
 //SYSIN DD *

DATA TEST;
 INFILE ddname;
 INPUT variable list ;

4. Read raw data on disk and the MSS in EDIT format when data lines do extend
past column 80

 // (JOB statement)
 // JCLLIB ORDER=ZABCRUN.PROCLIB
 // EXEC EDSIN,NAME=’aaaaiii.dsname’,LRECL=len,BLKSIZE=b
 // EXEC SAS
 //ddname DD DSN=&INPUT,DISP=(OLD,DELETE)
 //SYSIN DD *

DATA TEST;
 INFILE ddname;
 INPUT variable list ;

5. Read raw data on NIH standard tape

 // (JOB statement with class B or C)
 /*MESSAGE nnnnnn,R
 /*ROUTE XEQ TAPE
 // JCLLIB ORDER=ZABCRUN.PROCLIB
 // EXEC SAS
 //ddname DD DSN=aaaaiii.dsname,DISP=SHR,
 // UNIT=TAPE,VOL=SER=nnnnnn)
 //SYSIN DD *

DATA TEST;
 INFILE ddname;
 INPUT variable list ;

 • Or with the FILENAME statement

// (JOB statement with class B or C)
 /*MESSAGE nnnnnn,R
 /*ROUTE XEQ TAPE
 // JCLLIB ORDER=ZABCRUN.PROCLIB
 // EXEC SAS
 //SYSIN DD *
 FILENAME fileref ’aaaaiii.dsname’ DISP = SHR
 UNIT = TAPE VOLSER = ’nnnnnn’ LABEL =(seqnum,lab) ;

DATA TEST;
 INFILE fileref;
 INPUT variable list ;

Note:
To access files that are stored on tape under another user’s account or initials, include
the /*ACCESS statement

/*ACCESS aaaaiii
where ’aaaaiii’ is the account/initials combination to which the tape is assigned.

18

6. Read raw data on 6250 BPI tape

 // (JOB statement with class B or C)
 /*MESSAGE nnnnnn,R
 /*ROUTE XEQ 9TRACKHI
 // JCLLIB ORDER=ZABCRUN.PROCLIB
 // EXEC SAS
 //ddname DD DSN=dsname,DISP=SHR,
 // VOL=SER=nnnnnn,UNIT=9TRACKHI,
 // LABEL=(seqnum,lab)
 //SYSIN DD *

DATA TEST;
 INFILE ddname;
 INPUT variable list ;

 • Or with the FILENAME statement

 // (JOB statement with class B or C)
 /*MESSAGE nnnnnn,R
 /*ROUTE XEQ 9TRACKHI
 // JCLLIB ORDER=ZABCRUN.PROCLIB
 // EXEC SAS
 //SYSIN DD *

FILENAME filref ’aaaaiii.dsname’ DISP=SHR
 UNIT = ’9TRACKHI’ VOLSER = ’nnnnnn’ LABEL = (seqnum,lab) ;

DATA TEST;
 INFILE fileref ;

 INPUT variable list ;

7. Read SAS data set on the disk and the MSS

 // (JOB statement)
 // JCLLIB ORDER=ZABCRUN.PROCLIB
 // EXEC SAS
 //ddname DD DSN=aaaaiii.dsname,DISP=SHR
 //SYSIN DD *

DATA TEST;
 SET ddname.SASname;

• Or with the LIBNAME statement

 // (JOB statement)
 // JCLLIB ORDER=ZABCRUN.PROCLIB
 // EXEC SAS
 //SYSIN DD *

LIBNAME libref ’aaaaiii.dsname’;

 DATA TEST;
 SET libref.SASname;

19

8. Read SAS data set on NIH standard tape

 // (JOB statement with class B or C)
 /*MESSAGE nnnnnn,R
 /*ROUTE XEQ TAPE
 // JCLLIB ORDER=ZABCRUN.PROCLIB
 // EXEC SAS
 //ddname DD DSN=dsname,DISP=SHR,
 // VOL=SER=nnnnnn,UNIT=TAPE,
 // LABEL=(seqnum,lab)

//SYSIN DD *

DATA TEST;
 SET ddname.SASname ;

• Or with the LIBNAME statement

 // (JOB statement with class B or C)
 /*MESSAGE nnnnnn,R
 /*ROUTE XEQ TAPE
 // JCLLIB ORDER=ZABCRUN.PROCLIB
 // EXEC SAS

//SYSIN DD *

DATA TEST;
 SET libref.SASname ;

LIBNAME libref ’aaaaiii.dsname’ UNIT = TAPE DISP = SHR
 VOLSER = ’nnnnnn’ LABEL = (seqnum,lab) ;

9. Read SAS data set on 6250 BPI tape

// (JOB statement with class B or C)
 /*MESSAGE nnnnnn,R
 /*ROUTE XEQ 9TRACKHI
 // JCLLIB ORDER=ZABCRUN.PROCLIB
 // EXEC SAS
 //ddname DD DSN=dsname,DISP=SHR,
 // VOL=SER=nnnnnn,UNIT=9TRACKHI,
 // LABEL=(seqnum,lab)
 //SYSIN DD *

DATA TEST;
 SET ddname.SASname ;

• Or with the LIBNAME statement

 // (JOB statement with class B or C)
 /*MESSAGE nnnnnn,R
 /*ROUTE XEQ 9TRACKHI
 // JCLLIB ORDER=ZABCRUN.PROCLIB
 // EXEC SAS
 //SYSIN DD *

DATA TEST;
SET libref.SASname ;

LIBNAME libref ’aaaaiii.dsname’ UNIT = ’9TRACKHI’ DISP = SHR
 VOLSER = ’nnnnnn’ LABEL = (seqnum,lab) ;

20

Output Samples

NOTE:
All FILE, TMP, and MSS data sets are cataloged. All references to data sets on the disk are made through
the catalog. One consequence of the all-cataloged environment is that during program development, it is
possible to accidentally create multiple copies of permanent files of which only the first copy is
cataloged. To avoid this, include an EXEC DSSCR statement in the JCL to delete previous copies of the
permanent file. General Form: // EXEC DSSCR,NAME=’aaaaiii.dsname’

10. Write raw data to a file on the disk // (JOB statement) // JCLLIB
ORDER=ZABCRUN.PROCLIB // EXEC DSSCR,NAME=’aaaaiii.dsname’ // EXEC SAS
 //ddname DD UNIT=FILE,DISP=(NEW,CATLG),
 // DSN=aaaaiii.dsname,SPACE=(TRK,(s1,s2),RLSE),
 // DCB=(RECFM=FB,LRECL=len,BLKSIZE=b)
 //SYSIN DD *

 DATA _NULL_;
 /* other-SAS-statements */
 FILE ddname;
 /* other-SAS-statements */

 • Or with the FILENAME statement

 // (JOB statement)
 // JCLLIB ORDER=ZABCRUN.PROCLIB
 // EXEC DSSCR,NAME=’aaaaiii.dsname’
 // EXEC SAS
 //SYSIN DD *

FILENAME fileref ’aaaaiii.dsname’ UNIT=FILE DISP=(NEW,CATLG)
 SPACE=(TRK,(s1,s2),RLSE) RECFM=FB LRECL=len BLKSIZE=b ;

DATA _NULL_;
 /* other-SAS-statements */
 FILE fileref;
 /* other-SAS-statements */

NOTE:
Specify DISP=MOD if the data set exists and new records are to be added to the end.

11. Write raw data to a file on the MSS
 // (JOB statement)
 /*ROUTE XEQ MSS
 // JCLLIB ORDER=ZABCRUN.PROCLIB
 // EXEC DSSCR,NAME=’aaaaiii.dsname’
 // EXEC SAS
 //ddname DD UNIT=MSS,DISP=(NEW,CATLG),
 // DSN=aaaaiii.dsname,SPACE=(TRK,(s1,s2),RLSE),
 // DCB=(RECFM=FB,LRECL=len,BLKSIZE=b)
 //SYSIN DD *

 DATA _NULL_;
 /* other-SAS-statements */

FILE ddname;
 /* other-SAS-statements */

• Or with the FILENAME statement
 // (JOB statement)
 /*ROUTE XEQ MSS
 // JCLLIB ORDER=ZABCRUN.PROCLIB
 // EXEC DSSCR,NAME=’aaaaiii.dsname’
 // EXEC SAS
 //SYSIN DD *
 FILENAME fileref ’aaaaiii.dsname’ UNIT=MSS DISP=(NEW,CATLG)

SPACE=(TRK,(s1,s2),RLSE) RECFM=FB LRECL=len BLKSIZE=b ;

DATA _NULL_;
 /* other-SAS-statements */

FILE fileref;
 /* other-SAS-statements */

21

12. Write raw data to file on NIH standard tape // (JOB statement with class B or C)
 /*MESSAGE nnnnnn,W
 /*ROUTE XEQ TAPE
 // JCLLIB ORDER=ZABCRUN.PROCLIB
 // EXEC SAS
 //ddname DD UNIT=TAPE,DISP=(NEW,CATLG),DSN=aaaaiii.dsname,
 // VOL=SER=nnnnnn,LABEL=(seqnum,lab),
 // DCB=(RECFM=FB,LRECL=len,BLKSIZE=b)
 //SYSIN DD *

 DATA _NULL_;
 /* other-SAS-statements */
 FILE ddname ;
 /* other-SAS-statements */

 • Or with the FILENAME statement

 // (JOB statement with class B or C)
 /*MESSAGE nnnnnn,W
 /*ROUTE XEQ TAPE
 // JCLLIB ORDER=ZABCRUN.PROCLIB
 // EXEC SAS
 //SYSIN DD *

 FILENAME fileref ’aaaaiii.dsname’ UNIT = TAPE DISP = (NEW,CATLG)
 VOLSER = ’nnnnnn’ LABEL = (seqnum,lab) RECFM=FB LRECL=len BLKSIZE=b ;

 DATA _NULL_;
 /* other-SAS-statements */

FILE fileref;
 /* other-SAS-statements */

13. Write raw data to file on 6250 BPI tape

 // (JOB statement with class B or C)
 /*MESSAGE nnnnnn,W
 /*ROUTE XEQ 9TRACKHI
 // JCLLIB ORDER=ZABCRUN.PROCLIB
 // EXEC SAS
 //ddname DD UNIT=9TRACKHI,DISP=(NEW,CATLG),
 // DSN=aaaaiii.dsname,VOL=SER=nnnnnn,
 // LABEL=(seqnum,lab),DCB=(RECFM=FB,LRECL=len,BLKSIZE=b)
 //SYSIN DD *

 DATA _NULL_;
 /* other-SAS-statements */
 FILE ddname;
 /* other-SAS-statements */

 • Or with the FILENAME statement

 // (JOB statement with class B or C)
 /*MESSAGE nnnnnn,W
 /*ROUTE XEQ 9TRACKHI
 // JCLLIB ORDER=ZABCRUN.PROCLIB
 // EXEC SAS
 //SYSIN DD *

 FILENAME fileref ’aaaaiii.dsname’ UNIT = ’9TRACKHI’ DISP = (NEW,CATLG)
 VOLSER = ’nnnnnn’ LABEL = (seqnum,lab) RECFM=FB LRECL=len BLKSIZE=b ;
 DATA _NULL_;
 /* other-SAS-statements */
 FILE fileref;
 /* other-SAS-statements */

22

14. Write SAS data set to the disk

 // (JOB statement)
 // JCLLIB ORDER=ZABCRUN.PROCLIB
 // EXEC DSSCR,NAME=’aaaaiii.dsname’
 // EXEC SAS
 //ddname DD UNIT=FILE,DISP=(NEW,CATLG),
 // DSN=aaaaiii.dsname,SPACE=(TRK,(s1,s2),RLSE)
 //SYSIN DD *

 DATA ddname.SASname;
 /* other-SAS-statements */

 • Or with the LIBNAME statement

 // (JOB statement)
 // JCLLIB ORDER=ZABCRUN.PROCLIB
 // EXEC DSSCR,NAME=’aaaaiii.dsname’
 // EXEC SAS
 //SYSIN DD *

 LIBNAME libref ’aaaaiii.dsname’ UNIT=FILE
 DISP=(NEW,CATLG) SPACE=(TRK,(s1,s2),RLSE) ;

 DATA libref.SASname;
 /* other-SAS-statements */

15. Write SAS data set to the MSS // (JOB statement)
 // JCLLIB ORDER=ZABCRUN.PROCLIB
 // EXEC DSSCR,NAME=’aaaaiii.dsname’
 // EXEC SAS
 //ddname DD UNIT=MSS,DISP=(NEW,CATLG),
 // DSN=aaaaiii.dsname,SPACE=(TRK,(s1,s2),RLSE)
 //SYSIN DD *

 DATA ddname.SASname;
 /* other-SAS-statements */

 • Or with the LIBNAME statement

 // (JOB statement)
 // JCLLIB ORDER=ZABCRUN.PROCLIB
 // EXEC DSSCR,NAME=’aaaaiii.dsname’
 // EXEC SAS
 //SYSIN DD *

 LIBNAME libref ’aaaaiii.dsname’ UNIT=MSS DISP=(NEW,CATLG)
 SPACE=(TRK,(s1,s2),RLSE) ;

 DATA libref.SASname;
 /* other-AS-statements */

23

16. Write SAS data set to NIH standard tape

 // (JOB statement with class B or C)
 /*MESSAGE nnnnnn,W
 /*ROUTE XEQ TAPE
 // JCLLIB ORDER=ZABCRUN.PROCLIB
 // EXEC SAS
 //ddname DD UNIT=TAPE,DISP=(NEW,CATLG),
 // DSN=aaaaiii.dsname,VOL=SER=nnnnnn,
 // LABEL=(seqnum,lab)
 //SYSIN DD *

 DATA ddname.SASname;
 /* other-SAS-statements

 • Or with the LIBNAME statement

 // (JOB statement with class B or C)
 /*MESSAGE nnnnnn,W
 /*ROUTE XEQ TAPE
 // JCLLIB ORDER=ZABCRUN.PROCLIB
 // EXEC SAS
 //SYSIN DD *

 LIBNAME libref ’aaaaiii.dsname’ UNIT = TAPE DISP = (NEW,CATLG)
 VOLSER = ’nnnnnn’ LABEL = (seqnum,lab) ;

 DATA libref.SASname;
 /* other-SAS-statements */

17. Write SAS data set to 6250 BPI tape

 // (JOB statement with class B or C)
 /*MESSAGE nnnnnn,W
 /*ROUTE XEQ 9TRACKHI
 // JCLLIB ORDER=ZABCRUN.PROCLIB
 // EXEC SAS
 //ddname DD UNIT=9TRACKHI,DISP=(NEW,CATLG),
 // DSN=aaaaiii.dsname,VOL=SER=nnnnnn,
 // LABEL=(seqnum,lab)
 //SYSIN DD *

 DATA ddname.SASname;
 /* other-SAS-statements */

 • Or with the LIBNAME statement

 // (JOB statement with class B or C)
 /*MESSAGE nnnnnn,W
 /*ROUTE XEQ 9TRACKHI
 // JCLLIB ORDER=ZABCRUN.PROCLIB
 // EXEC SAS
 //SYSIN DD *
 LIBNAME libref ’aaaaiii.dsname’ UNIT = ’9TRACKHI’ DISP = (NEW,CATLG)
 VOLSER = ’nnnnnn’ LABEL = (seqnum,lab) ;

 DATA libref.SASname;
 /* other-SAS-statements */

24

18. Sample program with both input and output.

Suppose there are two sources of input
1) Read a raw data file on the MSS in EDIT format with records extending past

column 80
2) read a SAS data set on FILE
3) Write a SAS data set to an NIH standard tape.

 // (JOB statement with class B or C)
 /*MESSAGE nnnnnn,W
 /*ROUTE XEQ TAPE
 // JCLLIB ORDER=ZABCRUN.PROCLIB
 // EXEC EDSIN,NAME=’aaaaiii.mssdsname’,LRECL=len,BLKSIZE=b
 // EXEC SAS
 //ddname1 DD DSN=&INPUT,DISP=(OLD,DELETE)
 //ddname2 DD DSN=aaaaiii.diskdsname,DISP=SHR
 //ddname3 DD UNIT=TAPE,DISP=(NEW,CATLG),
 // DSN=aaaaiii.tapedsname,VOL=SER=nnnnnn,
 // LABEL=(seqnum,lab)
 //SYSIN DD *

25

Access SPSS Files

The SPSS read-only engine enables you to access files that were created with SPSS
software as if these files are written by the SAS System:

• SPSS engine accesses standard SPSS files created under Release 9 of
SPSS as well as SPSS-X system files and portable files. The SPSS
portable files can originate from any operating system. The engine
automatically determines which type of SPSS file it is reading and
reads the file accordingly.

Assigning a Libref to an SPSS File

In order to access a standard SPSS file you include a LIBNAME statement to assign a
libref to the SPSS file. Specify the SPSS option in the LIBNAME statement. This
option is called an engine and tells SAS that the file is an SPSS file.

SPSS files do not have an internal member name as in SAS. Consequently you use the
word _FIRST_ in your SAS programs to refer to the data set name.

Example 1: Reads a portable SPSS file in a DATA step

 // (JOB statement)
 // JCLLIB ORDER=ZABCRUN.PROCLIB
 // EXEC SAS
 //SYSIN DD *

 LIBNAME libref SPSS ’aaaaiii.dsname’ ;

 DATA TEST ;
 SET libref._FIRST_ ;

Example 2: Processes a standard SPSS file with the PROC CONTENTS procedure

 // (JOB statement)
 // JCLLIB ORDER=ZABCRUN.PROCLIB
 // EXEC SAS
 //SYSIN DD *

 LIBNAME libref SPSS ’aaaaiii.dsname’ ;

 PROC CONTENTS data = libref._FIRST_ ;

26

Access BMDP Files

The read-only BMDP engine enables you to access files that were created with BMDP
software as if these files are written by the SAS System:

Assigning a Libref to a BMDP FIle

In order to access a BMDP file, you must use the LIBNAME statement to assign a
libref to the file. Specify the BMDP engine in the LIBNAME statement as shown in
the following examples.

Because there can be multiple "save" files in a single physical BMDP file, you use
the value of the BMDP CODE=argument as the name of the SAS data file. For example,
if the BMDP ’save" file contains CODE=abc, and if the libref is xxx, you reference
the file as xxx.abc.

 LIBNAME xxx BMDP ’aaaaiii.dsname’; /*reference the physical BMDP file */

DATA test ;
SET xxx.abc ;

Example 1:

In your SAS program, if you want to access the first BMDP "save" file in the
operating system data set, or if there is only one "save" file, you can refer to
the file as _FIRST_. This approach is convenient if you do not know the
BMDP CODE=argument as the name of the SAS data file.

LIBNAME xxx BMDP ’aaaaiii.dsname’ ; /*reference the physical BMDP file */

DATA test ;
SET xxx._FIRST_ ;

Example 2:

The following statements assign a libref to the data set and then run a PROC
CONTENTS and a PROC PRINT on the BMDP file.

LIBNAME xxx BMDP ’aaaaiii.dsname’ ; /*reference the physical BMDP file*/

PROC CONTENTS data = xxx.abc;

PROC PRINT data = xxx.abc ;

27

Access DB2 tables from SAS

You can access DB2 tables using SAS in batch mode or in full-screen mode (e.g.
TN3270) after setting up your sessions appropriately.

There are two methods of accessing DB2 data:

1. Use the SQL Pass-Through Facility
Allows you to access DB2 data using SQL syntax with PROC SQL.

2. Use Access and View Descriptors
Allows you to create views of the DB2 data so you can access it as if it were a
SAS data set.

The following documentation is available at the
CIT Technical Information Office (301-594-3278).

1. SAS/ACCESS Software for Relational Databases and the DB2 chapter
2. SAS/ACCESS Software, Changes and Enhancements, SQL Procedure

Pass-Through Facility

I. Setup

A. Batch Mode

To use DB2 data from SAS:
Specify the subsystem you want to access and include one of the following JCL
statements. The ROUTE statement should be placed immediately after the JOB
statement.

Subsystem ROUTE Statement

DSND /*ROUTE XEQ DB2DEV
DSNP /*ROUTE XEQ DB2PROD

To invoke SAS use the appropriate EXEC statement below:

Subsystem EXEC Statement

DSNP // EXEC SASDSNP
DSND // EXEC SASDSND

In the SAS program include an OPTIONS statement specifying the subsystem to which
you are connecting:

Subsystem OPTIONS Statement

DSND options db2ssid=dsnd;
DSNP options db2ssid=dsnp;

28

B. Full-Screen Mode

To access DB2 data from SAS in full-screen mode you must first create a user
profile. This file will be invoked when you invoke a 3270 session. The profile
should contain the command:

 DBALLOC SYSP(’’’ZABCRUN.SAS.CLIST’’’)

The profile name and subsystem should be specified:

Subsystem Profile

DSND aaaaiii.@DB.DEV.PROFILE.CLIST
DSNP aaaaiii.@DB.PROD.PROFILE.CLIST

Log on to DB2 not SAS. To log on use one of the commands below depending on what
DB2 subsystem you want to access:

Subsystem DB Command

DSND DB aaaaiii DBDEV
DSNP DB aaaaiii DBPROD

After the READY prompt, invoke SAS by specifying the appropriate subsystem and
corresponding command

Subsystem Command

DSND SASDSND
DSNP SASDSNP

29

II. Using the SQL Pass-Through Facility

A. Batch Mode

1. Querying DB2 data

The SQL Pass-Through Facility is part of Base SAS and allows you to use SQL within
SAS. To use SQL in SAS use the SQL procedure. To access DB2 data you must include
the CONNECT TO DB2 statement and the SELECT * FROM CONNECTION TO DB2 statement as
shown in the example below. In a separate SELECT statement and enclosed in
parenthesis you specify the table, columns, rows and statistics to select.

The following program queries the DB2 table CUSTOMERS. Notice that it invokes the
DB2 subsystem DSNP. If your data is in subsystem DSND you would need to modify the
JCL and the SSID= option in the CONNECT statement as stated above.

 //iii JOB (aaaa,box,class),lastname
 /*ROUTE XEQ DB2PROD
 // JCLLIB ORDER=ZABCRUN.PROCLIB
 // EXEC SASDSNP
 //SYSIN DD *

 proc sql;
 connect to db2 (ssid=dsnp);
 select * from connection to db2
 (select name, contact from aaaaiii.customers);
 disconnect from db2;
 quit;

2. Creating a SAS data set

To create a SAS data set use the CREATE TABLE statement as shown in the example
below. The program creates a temporary SAS data set called CUSTOMER. To create a
permanent SAS data set specify a two-part SAS data set name and a LIBNAME
statement.

 //iii JOB (aaaa,box,class),lastname
 /*ROUTE XEQ DB2PROD
 // JCLLIB ORDER=ZABCRUN.PROCLIB
 // EXEC SASDSNP
 //SYSIN DD *

 proc sql;
 connect to db2 (ssid=dsnp);
 create table customer as
 select * from connection to db2
 (select name, contact from aaaaiii.customers);
 disconnect from db2;
 quit;

30

B. Full-Screen Mode

1. Querying DB2 data

The SQL Pass-Through Facility is part of Base SAS and allows you to use SQL within
SAS. To use SQL in SAS use the SQL procedure. To access DB2 data you must include
the CONNECT TO DB2 statement and the SELECT * FROM CONNECTION TO DB2 statement as
shown in the example below. In a separate SELECT statement and enclosed in
parenthesis you specify the table, columns, rows and statistics to select.

This program queries the DB2 table CUSTOMERS. Notice that we are invoking the DB2
subsystem DSNP. If your data is in subsystem DSND you would need to modify the JCL
and the SSID= option in the CONNECT statement.

 proc sql;
 connect to db2 (ssid=dsnp);
 select * from connection to db2
 (select name, contact from aaaaiii.customers);
 disconnect from db2;
 quit;

2. Creating a SAS data set

To create a SAS data set use the CREATE TABLE statement as shown in the example
below. The program creates a temporary SAS data set called CUSTOMER. To create a
permanent SAS data set specify a two-part SAS data set name and a LIBNAME
statement.

 proc sql;
 connect to db2 (ssid=dsnp);
 create table customer as
 select * from connection to db2
 (select name, contact from aaaaiii.customers);
 disconnect from db2;
 quit;

31

III. Access and View Descriptors

To access DB2 data as if it were a SAS data set you must:

1. create an access descriptor using PROC ACCESS
2. create a view descriptor using PROC ACCESS
3. use the view descriptor as you would use a standard SAS data set

Below are some examples of creating the descriptors. These are very simple
examples. You should read the DB2 Chapter of the guide "SAS/ACCESS Software for
Relational Databases" for the complete syntax of the ACCESS procedure.

A. Batch Mode

1. Creating access and view descriptors

As mentioned before in order to access DB2 data from SAS you need to create an
access descriptor and a view descriptor. An access descriptor holds information
about the DB2 table such as column names, data types, SAS variable names and
formats. A view descriptor defines some or all of the columns and rows described by
the access descriptor.
You may create more than one of each if needed. A view descriptor is considered a
SAS data set and is used as you would any SAS data set. To create access and view
descriptors use the ACCESS procedure.

In the example below we first use a LIBNAME statement to create a SAS library. Then
the ACCESS procedure creates the access descriptor called CUSTOMER and a view
descriptor called CUSTOMER. The name of the access descriptor and the view
descriptor can be the same. SAS recognizes one from the other from the type of
descriptor it is: ACCESS or VIEW. You only need to specify the type when you create
them (i.e. in the CREATE statement).

 //iii JOB (aaaa,box,class),lastname
 /*ROUTE XEQ DB2PROD
 // JCLLIB ORDER=ZABCRUN.PROCLIB
 // EXEC SASDSNP
 //SYSIN DD *

 options db2ssid=dsnp;

 libname out ’aaaaiii.sasdb2.library’ unit=file
 disp=(new,catlg) space=(trk,(1,20));

 proc access dbms=db2;
 create out.customer.access;
 table=aaaaiii.customers;
 assign=yes;
 create out.customer.view;
 select customer name contact;

32

2. Using a view descriptor

The following program accesses the view descriptor CUSTOMER that was created in the
previous example. Even though it points to a DB2 table you can use it as if it were
a SAS data set.

 //iii JOB (aaaa,box,class),lastname
 /*ROUTE XEQ DB2PROD
 // JCLLIB ORDER=ZABCRUN.PROCLIB
 // EXEC SASDSNP
 //SYSIN DD *

 options db2ssid=dsnp;

 libname in ’aaaaiii.sasdb2.library’ disp=shr;

 proc means data=in.customer;
 var sales;
 run;

 data md;
 set in.customer;
 if state=’MD’ then sales=sales*1.05;
 run;

 proc print;
 run;

33

B. Full-Screen Mode

1. Creating access and view descriptors

 libname out ’aaaaiii.sasdb2.library’ unit=file disp=(new,catlg)
 space=(trk,(1,20));
 proc access accdesc=out.customer function=c;
 run;

2. Using a view descriptor

 options db2ssid=dsnp;

 libname in ’aaaaiii.sasdb2.library’ disp=shr;

 proc means data=in.customer;
 var sales;
 run;

 data md;
 set in.customer;
 if state=’MD’ then sales=sales*1.05;
 run;

 proc print;
 run;

34

PROC BMDP Procedure

Objective: Calls a BMDP program to analyze data in a SAS data set

or

Converts a SAS data set to a BMDP "save" file

Syntax:

PROC BMDP options ; /* reference the BMDP program you want to invoke*/
VAR variable-list ; /*optional */ /*when you do not include a VAR statement, the BMDP

program uses all the numeric variables in the SAS data set. */
BY variable-list ; /* optional */
PARMCARDS; /* indicates the BMDP control language follows */
BMDP control statements
.
;

The following options can be used in the PROC BMDP statement:

CODE = save-file
assigns a name to the BMDP "save" file that the BMDP procedure creates from a
SAS data set. The save-file corresponds to the CODE sentence in the BMDP INPUT
paragraph. For example, you can use the following statement:

PROC BMDP PROG=BMDP3S CODE=JUDGES;

Then, the BMDP INPUT paragraph must contain the following sentence:

CODE = ’JUDGES’

CODE = usually is not necessary in the PROC BMDP statement. When CODE= is not
specified, the name of the BMDP "save" file is the SAS data set name.

If you are converting a SAS data set to a BMDP "save" file, include the CODE
sentence in the BMDP SAVE paragraph to name the BDMP "save" file. To use the
name of the SAS data set, specify that name of the SAS data set in the CODE
sentence of the BMDP INPUT paragraph.

PROG=BMDPnn specifies the BMDP program that you want to run.
Note: If you want only to convert a SAS data set to a BMDP "save’

file and do not want to run a BMDP program, omit
the PROG = option and include the UNIT = option

UNIT=n

specifies the FORTRAN logical unit number for the BMDP "save" file that the
BMDP procedure creates. The value you specify for n must correspond to the
UNIT= value that is specified in the INPUT paragraph of the BMDP control
language.
If you omit this option, n defaults to 3 and FT03F001 is used as the fileref
for the "save" file. The following message is also printed:

Note: The UNIT= option was not specified. Unlike Version 5, the UNIT = option is required.
Therefore, UNIT=3 is assumed. Ensure that the INPUT paragraph uses a unit of 3, or explicitly
specify the correct UNIT value.

35

WORKSPCE = nn or PARM = nn

Controls the allocation of a workspace in BMDP. The WRKSPCE = or PARM = value
is passed as a parameter to BMDP programs and corresponds to the WRKSPCE =
feature in BMDP MVS cataloged procedures. The default value for nn is 30. If
nn is less than 100, then its value represents kilobytes. If it is greater
than 100, then its value represents bytes.

PARMCARDS Statement

PARMCARDS:

The PARMCARDS statement indicates that the BMDP control language follows.

BMDP Control Statements

Put your BMDP control language statements after the PARMCARDS statement. These
statements are similar for all BMDP programs.

The BMDP INPUT paragraph must include UNIT and CODE sentences. The value of these
sentences must match the UNIT= and the CODE= values that are given in the PROC BMDP
statement. (If the PROC BMDP statement does not specify a UNIT= value, then use 3
as the UNIT= value in the BMDP statements.) Use the SAS data set name as the CODE
value unless you have used the CODE= option in the PROC BMDP statement to specify a
different name. Omit the VARIABLES paragraph from the BMDP statements, because it
is not needed when your input is a "save’ file.

How Missing Values Are Handled

Before the BMDP procedure sends data to BMDP, it converts missing SAS values to the
standard BMDP missing value. When you use the NOMISS option in the PROC BMDP
statement, observations that contain missing values are excluded from the data set
that is sent to the BMDP program.

NOTE:
In order to use the BMDP procedure in a SAS session use the following JCL statement
to request the cataloged procedure SASBMDP rather than the usual cataloged
procedure SAS.

// EXEC SASBMDP

Example 1:

Calls a BMDP program to analyze data in a SAS data set // (JOB statement)
 // JCLLIB ORDER=ZABCRUN.PROCLIB
 // EXEC SASBMDP
 //ddname DD DSN=aaaaiii.dsname,DISP=SHR
 //SYSIN DD *

PROC BMDP DATA = ddname.sasdsname UNIT=3 PROG=BMDP1D ;
VAR variables ;
PARMCARDS ;
/PROB TITLE IS ’SAS/BMDP’.
/INPUT UNIT = 3. CODE = ’sasdsname’.
/END
/FINISH
;

36

Example 2:

PROC BMDP calls the BMDP program BMDP1D to analyze the SAS data set and the result is stored
in a BMDP "save’ file.

 // (JOB statement)
 // JCLLIB ORDER=ZABCRUN.PROCLIB
 // EXEC DSSCR,NAME=’aaaaiii.dsname2’
 // EXEC SASBMDP
 //ddname DD DSN=aaaaiii.dsname1,DISP=SHR
 //FTnnF001 DD UNIT=FILE,DISP=(NEW,CATLG),
 // DCB=(RECFM=VBS,LRECL=6352,BLKSIZE=6356),
 // SPACE=(TRK,(s1,s2)),DSN=aaaaiii.dsname2
 //SYSIN DD *

PROC BMDP DATA = ddname.sasdsname UNIT=3 PROG=BMDP1D ;
 VAR variables ;
 PARMCARDS ;
 /PROB TITLE = ’SAS/BMDP’.
 /INPUT UNIT = 3. CODE = ’sasdsname’.
 /SAVE Code = ’bmdpname’. NEW. UNIT=nn.
 /END
 /FINISH
 ;
where ’nn,’ in the UNIT=nn sentence specifies the logical unit number for the BMDP ’save"
file. It is an integer between 08 and 15.
UNIT = nn in the SAVE paragraph should refer to the FTnnF001 fileref in the JCL DD
statement.

The word NEW must be in the SAVE paragraph.

Note the BMDP program statements UNIT=3. and CODE = ’sasdsname’. The results are stored in
the BMDP "save" file NEW.

When using BMDP from SAS, do not use the VARIABLES paragraph in BMDP. The INPUT paragraph
with the UNIT and CODE sentences is required

Example 3:

Assign a libref to a BMDP file.

LIBNAME FT04F001 BMDP ;

Data _null_ ;
 SET FT04F001.bmdpname ;
 PUT ALL ;

The LIBNAME statement associates the libref FT04F001 with the BMDP engine so that SAS knows
which engine to use to access the data.

The DATA Step reads the BMDP "save’ file bmdpname.

37

PROC CONVERT Procedure

Objective: Converts BMDP and SPSS system files to SAS data sets

PROC CONVERT produces one output SAS data set, but no printed output. The new SAS data set
contains the same information as the input system file; exceptions are noted below.

You can create a temporary or a permanent SAS data set. To create a temporary data set
specify a one-part name after OUT = option. Otherwise, include a LIBNAME statement and
include the libref after the OUT = option together with a SAS data set.

How Missing Values Are Handled

If a numeric variable in the input data set has no value or has a system missing value, PROC
CONVERT assigns a missing value to it.
Caution………
Because some translation of variable names can occur, ensure that the translated names will
be unique.

How Variable Names from the SPSS "save" file are used in the SAS data set.

• SPSS variable names and labels become variable names and labels
without change.

• SPSS alphabetic variables become SAS character variables of length 4.
• SPSS blank values are converted to SAS missing values.
• SPSS print formats become SAS formats
• SPSS default precision of no decimal places becomes part of the

variables formats.
• The SPSS DOCUMENT data are copied so that the CONTENTS procedure can display them.
• SPSS value labels are copied.

Example: Convert a standard SPSS file to a permanent SAS data set.
(does not apply to version 5 SAS data sets))

 // (JOB statement)
 // JCLLIB ORDER=ZABCRUN.PROCLIB
 // EXEC SAS
 //IN1 DD DSN=’aaaaiii.dsname’ DISP=SHR
 //SYSIN DD *

 LIBNAME IN1 SPSS ;
 LIBNAME OUT1 ’aaaaiii.dsname’ UNIT=FILE
 DISP=(NEW,CATLG) SPACE=(TRK,(s1,s2),RLSE) ;

 PROC CONVERT SPSS = IN1 OUT = OUT1 ;

How variable names from the BMDP "save" file are used in the SAS data set

Variable names from the BMDP "save" file are used in the SAS data set, except that non-
trailing blanks and all special characters are converted to underscores in the SAS variable
names. The subscript in BMDP variable names, such as x(1), becomes part of the SAS variable
name, with the parentheses omitted: X1. Alphabetic BMDP variables become SAS character
variables of length 4. Category records from BMDP are not accepted.

Example: Convert a BMDP "save" file to a permanent SAS data set.

// (JOB statement)
 // JCLLIB ORDER=ZABCRUN.PROCLIB
 // EXEC SAS
 //IN1 DD DSN=’aaaaiii.bmdp.savefile’ DISP=SHR
 //SYSIN DD *
 LIBNAME IN1 BMDP ;
 LIBNAME OUT1 ’aaaaiii.dsname’ UNIT=FILE DISP=(NEW,CATLG)

 SPACE=(TRK,(s1,s2),RLSE) ;
PROC CONVERT BMDP = IN1 OUT = OUT1 ;

38

Transporting SAS Files Between Operating Systems

Introduction:

Different computer architectures typically have binary incompatibilities such as
different representations for floating-point numbers or different character-
encoding standards. Therefore, if you need to move SAS files to machines that are
running different operating systems, you usually must convert those files to and
from neutral, intermediary format called transport format. The only exception is
that transport format is not required when moving tape-format libraries between MVS
and CMS.

A convert file is called a transport file, and the process of moving a file from
one host operating system to another is called transporting. Therefore, a transport
file can be moved to any release of the SAS System on any host.

NOTE:
The following types of SAS files are host-dependent and therefore cannot be
transported:

a) Indexes
b) Views
c) Access descriptors
d) Stored programs

The SAS System provides three ways to transport files:

1) XPORT engine with the PROC COPY procedure
2) CPORT and CIMPORT procedures

Use the CPORT and CIMPORT procedures to transport SAS catalogs. You can use
these procedures to transport most types of SAS catalog entries except for
compiled macros and IML modules. These files must be created again after their
associated data sets have been installed on the receiving host.

The CPORT/CIMPORT transport format is different from the transport format that
is created by the XPORT engine. The CPORT/CIMPORT transport format is recognized
by the release on which it was produced or by later releases. Because of
enhancements that have been made to catalog structures, you sometimes cannot
move catalogs to earlier releases of the SAS System under MVS. For example, if
you use PROC CPORT to create a transport file in the 6.09 Enhanced release, you
cannot import that file in Release 6.07. However, from hosts that are running
Release 6.11 or later of the SAS System, you can use the V608 option with PROC
CPORT to convert most 6.11 catalog entry types to a transport file that can then
be imported by PROC CIMPORT on 6.08 or 6.09 hosts.

3) Separately licensed SAS/CONNECT product.
For more information about the SAS/CONNECT software product, see the
documentation SAS/CONNECT Software: Usage and Reference.

39

CAUTION!
If you attempt to use file transfer software (other than SAS/CONNECT software) to
copy SAS files across operating systems without first converting them to transport
files by using the PROC COPY or the PROC CPORT procedure, the files become
corrupted and therefore, unreadable.

Moving Files via tapes

Transport format is not required when you are moving tape-format libraries between
MVS and CMS. But for moving files via tape between other hosts, observe
the following:

1) The tape must be nonlabeled and be recorded at a density that can be read on the
destination machine. Because tape labels are processed differently on different
hosts, reading a file from a standard labeled tape may be somewhat complicated
on the receiving host.

2) Only one transport library should be written per tape; however, the transport
library can contain as many members as you want.

3) To ensure that there is never any question about which DCB characteristics have
been specified, SAS Institute recommends that you also use the DCB
characteristics.

// DCB=(RECFM=FB,LRECL=80,BLKSIZE=8000)

4) You may encounter problems during importing if your transport file spans more
than one tape. (Again, complications may arise because of differences in how
different hosts process multivolume tapes.) Therefore, instead of using
multivolume tapes, split the original library into two or more librarires and
create a separate, unlabeled tape for each one. You can combine the resulting
libraries on the receiving host.

General Steps:

Here is the general procedure for transporting a SAS file from one host to another:

1. On the sending host, convert the file to transport format.
2. Move the transport file to the receiving host via nonlabeled tape, diskette, or

communication software(such as FTP).
3. On the receiving host, import the transport file. That is, convert the transport

to the file format that is used on the receiving host.

A transport file created by PROC COPY cannot be read by PROC CIMPORT and vice
versa.

FTP can be used to move a SAS transport file between the PC and the mainframe. It
is necessary to specify that a binary file is being moved and then select from the
Menu bar…

FTP → COMMAND → Send Quoted Command to Remote →
Quoted Command:

Site RECFM(FB) LRECL(80) BLKSIZE(8000)

40

A Sampling of Programs to Create and to Import SAS Transport Files

1. Create a SAS transport file on 6250 BPI nonlabeled tape using PROC COPY with
the XPORT engine

 // (JOB statement with class B or C)
 /*ROUTE XEQ 9TRACKHI
 /*MESSAGE nnnnnn,WS
 // JCLLIB ORDER=ZABCRUN.PROCLIB
 // EXEC SAS
 //ddname1 DD DSN=aaaaiii.dsname1,DISP=SHR
 //ddname2 DD UNIT=9TRACKHI,DISP=(NEW,CATLG),
 // DSN=aaaaiii.dsname2,VOL=SER=nnnnnn,
 // DCB=(RECFM=FB,LRECL=80,BLKSIZE=8000),LABEL=(seqnum,NL)
 //SYSIN DD *

 LIBNAME ddname2 XPORT ;
 PROC COPY IN=ddname1 OUT=ddname2 ;

Note: To convert only selected SAS data sets in the library to transport
format, use PROC COPY procedure with the SELECT statement.

2. Import a SAS transport file from 6250 BPI nonlabeled tape using PROC COPY
with the XPORT engine

 // (JOB statement with class B or C)
 /*ROUTE XEQ 9TRACKHI
 /*MESSAGE nnnnnn,RS
 // JCLLIB ORDER=ZABCRUN.PROCLIB
 // EXEC DSSCR,NAME=’aaaaiii.dsname2’
 // EXEC SAS
 //ddname1 DD UNIT=9TRACKHI,DISP=SHR,
 // DSN=aaaaiii.dsname1,VOL=SER=nnnnnn,
 // DCB=(RECFM=FB,LRECL=80,BLKSIZE=8000),LABEL=(seqnum,NL)
 //ddname2 DD UNIT=FILE,DISP=(NEW,CATLG),
 // DSN=aaaaiii.dsname2,SPACE=(TRK,(s1,s2))
 //SYSIN DD *

 LIBNAME ddname1 XPORT ;
 PROC COPY IN=ddname1 OUT=ddname2 ;

3. Create a SAS transport file on 6250 BPI nonlabeled tape using PROC CPORT

 // (JOB statement with class B or C)
 /*ROUTE XEQ 9TRACKHI
 /*MESSAGE nnnnnn,WS
 // JCLLIB ORDER=ZABCRUN.PROCLIB
 // EXEC SAS
 //ddname DD DSN=aaaaiii.dsname1,DISP=SHR
 //SASCAT DD UNIT=9TRACKHI,DISP=(NEW.CATLG),
 // DSN=aaaaiii.dsname2,VOL=SER=nnnnnn,
 // DCB=(RECFM=FB,LRECL=80,BLKSIZE=8000),LABEL=(seqnum,NL)
 //SYSIN DD *

 PROC CPORT LIBRARY=ddname TAPE ;

41

4. Import a SAS transport file from 6250 BPI nonlabeled tape using PROC CIMPORT

 // (JOB statement with class B or C)
 /*ROUTE XEQ 9TRACKHI
 /*MESSAGE nnnnnn,RS
 // JCLLIB ORDER=ZABCRUN.PROCLIB
 // EXEC DSSCR,NAME=’aaaaiii.dsname2’
 // EXEC SAS
 //SASCAT DD UNIT=9TRACKHI,DISP=SHR,
 // DSN=aaaaiii.dsname1,VOL=SER=nnnnnn,
 // DCB=(RECFM=FB,LRECL=80,BLKSIZE=8000),LABEL=(seqnum,NL)
 //ddname DD UNIT=FILE,DISP=(NEW,CATLG),
 // DSN=aaaaiii.dsname2,SPACE=(TRK,(s1,s2))
 //SYSIN DD *

 PROC CIMPORT LIBRARY=ddname TAPE ;

5. Create a SAS transport file to the disk using PROC CPORT

//iii JOB (aaaa,,class),name
// JCLLIB ORDER=ZABCRUN.PROCLIB
// EXEC SAS
//STD1 DD DSN=aaaaiii.v6sas.formats,DISP=SHR
//TRANFILE DD DSN=aaaaiii.transport.file,DISP=(NEW,CATLG),
// UNIT=FILE,DCB=(RECFM=FB,LRECL=80,BLKSIZE=8000),
// SPACE=(TRK,(s1,s2))
//SYSIN DD *

Or use the LIBNAME and FILENAME statements rather than the
JCL (DD statements).

LIBNAME STD1 ’aaaaiii.v6sas.formats’;

FILENAME TRANFILE ’aaaaiii.transport.file’
 UNIT=FILE DISP=(NEW,CATLG) SPACE=(TRK,(s1,s2))
 RECFM=FB LRECL=80 BLKSIZE=8000 ;

PROC CPORT LIBRARY=STD1 FILE=TRANFILE ;

42

6. Import a SAS transport file to the disk using PROC CIMPORT

//iii JOB (aaaa,,class),name
// JCLLIB ORDER=ZABCRUN.PROCLIB
// EXEC SAS
//TRANFILE DD DSN=aaaaiii.transport.file,DISP=SHR,
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=8000)
//OUT1 DD DSN=aaaaiii.v6sas.formats,DISP=(NEW,CATLG),
// UNIT=FILE,SPACE=(TRK,(s1,s2))
//SYSIN DD *

7. Using the XPORT Engine with the SAS DATA Step to create a transport file

You can also convert a SAS data set to transport format by using the
XPORT engine in conjunction with the SAS DATA step. In this method,
you specify the XPORT engine on the LIBNAME statement for the transport file. Then
use the SAS DATA step to create the file as you would a SAS data set.
The following example creates a data set in transport format.

//iii JOB (aaaa,,class),name
// JCLLIB ORDER=ZABCRUN.PROCLIB
// EXEC SAS
//STD1 DD DSN=aaaaiii.dsname1,DISP=SHR
//TRANS DD DSN=aaaaiii.dsname2,DISP=(NEW,CATLG),
// UNIT=FILE,DCB=(RECFM=FB,LRECL=80,BLKSIZE=8000),
// SPACE=(TRK,(s1,s2))
//SYSIN DD *

LIBNAME trans XPORT ;

DATA trans.xprtest ;
 SET std1.test1 ;

 /* other-SAS-statements */

One disadvantage to this method is that you can create only one data set
at a time. Also, you must specify the name of a particular data set in
your program.

Note:
In addition to PROC COPY and the SAS DATA step, you can use the XPORT
engine in conjunction with any SAS procedure that reads or writes
SAS data sets. Simply specify the XPORT option in the LIBNAME statement
before using the libref in the PROC statement.

Or use LIBNAME and FILENAME statements rather than the
JCL (DD statements)

FILENAME TRANFILE ’aaaaiii.transport.file’
 RECFM=FB LRECL=80 BLKSIZE=8000 DISP=SHR ;

LIBNAME OUT1 ’aaaaiii.formats’ UNIT=FILE
DISP=(NEW,CATLG) SPACE=(TRK,(s1,s2)) ;

PROC CIMPORT LIBRARY = OUT1 INFILE = TRANFILE ;

43

A Sampling of Programs to Transfer SAS Transport Files Between
Operating Systems

1. Download SAS data set from MVS to PC-environment

Step 1. Create a SAS transport file to the disk on MVS.

//iii JOB (aaaa,,class),name
// JCLLIB ORDER=ZABCRUN.PROCLIB
// EXEC SAS
//STD1 DD DSN=aaaaiii.dsname1,DISP=SHR
//TRANS DD DSN=aaaaiii.dsname2,DISP=(NEW,CATLG),
// UNIT=FILE,DCB=(RECFM=FB,LRECL=80,BLKSIZE=8000),
// SPACE=(TRK,(s1,s2))
//SYSIN DD *

LIBNAME TRANS XPORT ;

PROC COPY IN = STD1 OUT = TRANS ;

Step 2: Transfer the SAS transport file

a) if you transfer the file by way of a software communication
package(like KERMIT, ProComm or other) to the PC environment be
certain to specify the following parameters...

SET DATA BINARY
SET RECFM FB
SET LRECL 80
SET BLKSIZE 8000

b) if you transfer the SAS transport file via FTP and you are using WIN95 or
WIN NT then
• Select Binary under the MODE menu(located in the center of the FTP windows)
• Select "send quoted command to remote" from the COMMAND menu
in the FTP window and enter the following command:

SITE RECFM(FB) LRECL(80) BLKSIZE(8000)

Step 3: Re-convert(import) the SAS transport file to a SAS data set on the PC

After transferring the SAS transport file, you may use the following sample
on the PC to re-convert the SAS file to a SAS data set.

LIBNAME TRANS XPORT ’C:\mydir\filename’ ;

LIBNAME OUT1 ’C:\mydir’ ;

PROC COPY IN = TRANS OUT=OUT1 ;
RUN;

44

2. Download SAS Library with member-type CATALOG from MVS to PC-environment

Please Note:
If the SAS Library contains member-type CATALOG then you must use PROC CPORT to create a
SAS transport file.

Step 1: Create a SAS transport file to the disk on MVS.

//iii JOB (aaaa,,E),name
// JCLLIB ORDER=ZABCRUN.PROCLIB
// EXEC SAS
//STD1 DD DSN=aaaaiii.v6sas.formats,DISP=SHR
//TRANFILE DD DSN=aaaaiii.transport.file,DISP=(NEW,CATLG),
// UNIT=FILE,DCB=(RECFM=FB,LRECL=80,BLKSIZE=8000),
// SPACE=(TRK,(s1,s2))
//SYSIN DD *

Step 2: Transfer the SAS transport file

a) if you transfer the file by way of a software communication
package(like KERMIT, ProComm or other) to the PC environment be certain to specify
the following parameters...

SET DATA BINARY
SET RECFM FB
SET LRECL 80
SET BLKSIZE 8000

b) if you transfer the SAS transport file via FTP and you are using WIN95 or
WIN NT then
• Select Binary under the MODE menu(located in the center of the FTP WINDOW)
• Select "send quoted command to remote" from the COMMAND menu in the FTP
window and enter the following command:
SITE RECFM(FB) LRECL(80) BLKSIZE(8000)

Step 3: Re-convert(import) the SAS transport file to a SAS data set on the PC

After transferring the SAS transport file, you may use the following sample
on the PC to re-convert the SAS transport file to a SAS data set.

FILENAME TRANFILE ’C:\mydir\filename’;
LIBNAME OUT1 ’C:\mydir’ ;
PROC CIMPORT LIBRARY = OUT1 INFILE = TRANFILE ;
RUN;

Or use the LIBNAME and FILENAME statements rather than JCL
(DD statements).

LIBNAME STD1 ’aaaaiiii.v6sas.formats’ ;
FILENAME TRANSFILE ’aaaaiii.transport.file’
 UNIT=FILE DISP=(NEW,CATLG) SPACE=(TRK,(s1,s2))
 RECFM=FB LRECL=80 BLKSIZE=8000 ;

PROC CPORT LIBRARY=STD1 FILE=TRANFILE ;

45

3. Upload SAS data sets from PC-environment to MVS

Step 1: Create a SAS transport file on the PC environment.

LIBNAME STD1 ’C:\mydir’ ;

LIBNAME TRANS XPORT ’C:\mydir\filename’ ;

PROC COPY IN = STD1 OUT=TRANS ;
 Select membername ;
RUN;

Step 2: Transfer the SAS transport file

a) if you transfer the file by way of a software communication
package(like KERMIT, ProComm or other) to the MVS environment be
certain to specify the following parameters...

SET DATA BINARY
SET RECFM FB
SET LRECL 80
SET BLKSIZE 8000

b) if you transfer the SAS transport file via FTP and you are using WIN95 or
WIN NT then
• Select Binary under the MODE menu(located in the center of the FTP WINDOW)
• Select "send quoted command to remote" from the COMMAND menu in the FTP window
and enter the following command:

SITE RECFM(FB) LRECL(80) BLKSIZE(8000)

Step 3: Re-convert(import) the SAS transport file to a SAS data set on MVS

After transferring the SAS transport file, you may use the following
sample on the mainframe to re-convert the SAS transport file to a SAS data set.

//iii JOB (aaaa,,class),name
// JCLLIB ORDER=ZABCRUN.PROCLIB
// EXEC SAS
//TRANS DD DSN=aaaaiii.dsname1,DISP=SHR,
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=8000)
//OUT1 DD DSN=aaaaiii.dsname2,DISP=(NEW,CATLG),
// UNIT=FILE,SPACE=(TRK,(s1,s2))
//SYSIN DD *

LIBNAME TRANS XPORT;
PROC COPY IN = TRANS OUT = OUT1 ;

46

4. Upload SAS Library with member-type CATALOG from PC-environment to MVS

Please Note:
If the SAS Library contains member-type CATALOG then you must use PROC CPORT to
create a SAS transport file.

Step 1: Create a SAS transport file on the PC environment.

LIBNAME STD1 ’C:\mydir’;
FILENAME TRANS ’C:\mydir\filename’ ;
PROC CPORT LIBRARY = STD1 FILE = TRANS ;
RUN;

Step 2: Transfer the SAS transport file

a) if you transfer the file by way of a software communication
package(like KERMIT, ProComm or other) to the MVS environment be certain to
specify the following parameters...

SET DATA BINARY
SET RECFM FB
SET LRECL 80
SET BLKSIZE 8000

b) if you transfer the SAS transport file via FTP and you are using WIN95 or
WIN NT then
• Select Binary under the MODE menu(located in the center of the FTP WINDOW)
• Select "send quoted command to remote" from the COMMAND menu in the FTP
window and enter the following command:

SITE RECFM(FB) LRECL(80) BLKSIZE(8000)

Step 3: Re-convert(import) the SAS transport file to a SAS data set on MVS

After transferring the SAS transport file, you may use the following
sample on the mainframe to re-convert the SAS transport file to a SAS data set.

//iii JOB (aaaa,,E),name
// JCLLIB ORDER=ZABCRUN.PROCLIB
// EXEC SAS
//TRANS DD DSN=aaaaiii.transport.file,DISP=SHR,
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=8000)
//OUT1 DD DSN=aaaaiii.v6sas.formats,DISP=(NEW,CATLG),
// UNIT=FILE,SPACE=(TRK,(s1,s2))
//SYSIN DD *

PROC CIMPORT LIBRARY = OUT1 INFILE = TRANS ;Or use LIBNAME and FILENAME statements rather than the JCL
(DD statements)

FILENAME TRANS ’aaaaiii.transport.file’ RECFM=FB LRECL=80
 BLKSIZE=8000 DISP=SHR ;
LIBNAME OUT1 ’aaaaiii.v6sas.formats’
 UNIT=FILE DISP=(NEW,CATLG) SPACE=(TRK,(s1,s2)) ;

PROC CIMPORT LIBRARY = OUT1 INFILE = TRANS ;

47

How to… Transform SAS data set on MVS to an SPSS portable file
1. Convert SAS version 6 data set to version 5
2. Convert SAS version 5 data set to a standard SPSS file
3. Convert a standard SPSS file to an SPSS portable file

1. Convert SAS version 6 data set on disk to version 5

//iii JOB (aaaa,bbb,class),name
// JCLLIB ORDER=ZABCRUN.PROCLIB
// EXEC SAS
//IN1 DD DSN=aaaaiii.v6dsname,DISP=SHR
//OUT1 DD DISP=(NEW,CATLG),SPACE=(CYL,(s1,s2),RLSE),UNIT=FILE,
// DSN=aaaaiii.v5dsname,DCB=(DSORG=DA,RECFM=U)
//SYSIN DD *

 /* specify the V5 engine in the LIBNAME statement */

LIBNAME OUT1 V5 ;

PROC COPY IN = IN1 OUT = OUT1 ;

PROC CONTENTS DATA = OUT1._ALL_ ;

2. Convert SAS version 5 data set to a standard SPSS file

//iii JOB (aaaa,bbb,class),name
// JCLLIB ORDER=ZABCRUN.PROCLIB
// EXEC SPSS
//IN1 DD DISP=SHR,DSN=aaaaiii.v5dsname
//OUT1 DD UNIT=FILE,DISP=(NEW,CATLG),
// DSN=aaaaiii.spssdsname,
// SPACE=(TRK,(s1,s2),RLSE)
//SYSIN DD *

 /* this method applies to version 5 SAS data set */

GET SAS DATA = IN1.SASdatasetname

SAVE OUTFILE = OUT1

3. Convert a standard SPSS file to an SPSS portable file

//iii JOB (aaaa,bbb,class),name
// JCLLIB ORDER=ZABCRUN.PROCLIB
// EXEC SPSS
//IN1 DD DSN=aaaaiii.spssdsname,DISP=SHR
//OUT1 DD DSN=aaaaiii.transp,DISP=(NEW,CATLG),UNIT=FILE,
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200),SPACE=(TRK,(s1,s2))
//SYSIN DD *
GET FILE = IN1
EXPORT OUTFILE = OUT1

48

How to… Download an SPSS portable file to the PC environment

1.Download an SPSS portable file to the PC
2.Re-convert(import) the SPSS portable file to a standard SPSS

file on the PC

1.Download an SPSS portable file to the PC

Please note:
An SPSS portable file is an ASCII character file and not a binary file

a) if you transfer the file by way of a software communication
package(like KERMIT, ProComm… or other) to the PC environment, you must specify the
following parameters:

SET DATA ASCII
SET RECFM FB
SET LRECL 80
SET BLKSIZE 3200

b) if you transfer the SPSS portable file via FTP and you are using WIN95 or
WIN NT then
• Select ASCII under the MODE menu(located in the center of the FTP WINDOW)
• Select "send quoted command to remote" from the COMMAND menu in the FTP WINDOW and

enter the following command:

SITE RECFM(FB) LRECL(80) BLKSIZE(3200)

3. Re-convert(import) an SPSS portable file to a standard SPSS file on the PC
After transferring the SPSS portable file, use the following SPSS statement
on the PC to re-convert the SPSS portable file to a standard SPSS file.

In SPSS for Windows, follow these steps:

1.from the File menu choose Open then Data
2.in the Open Data File window choose SPSS portable (*.por) from the
 File Type: field
3.locate the SPSS portable file
4.click the OK button

To save the file as a standard SPSS file follow these steps:

1.from the File menu choose Save As
2.from the Save file as type field choose SPSS (*.sav)
3.enter a file name in the File name: box
4.click the OK button

49

How to… Transform standard SPSS file on PC to a SAS data set on MVS
1. Create an SPSS portable file on the PC
2. Transfer an SPSS portable file to the mainframe
3. Re-convert(import) an SPSS portable file to a standard SPSS file on MVS
4. Convert the standard SPSS file to a SAS data set on MVS

1. Create an SPSS portable file on the PC

Windows Environments:

First open your SPSS save file using SPSS for Windows.

To create an SPSS portable file follow these steps:

1.from the File menu choose Save As
2.from the Save file as type field choose SPSS portable (*.por)
3.enter a file name in the File name: box
4.click the OK button
An SPSS portable file is a text file. If you are transferring this file electronically do
not transfer it as a binary file.

2. Transfer an SPSS portable file to the mainframe

Please note:
An SPSS portable file is an ASCII character file and not a binary file

a) if you transfer the file by way of a software communication
package(like KERMIT, ProComm… or other) to the PC environment be certain to specify
the following parameters:

SET DATA ASCII
SET RECFM FB
SET LRECL 80
SET BLKSIZE 3200

b) if you transfer the SPSS portable file via FTP and you are using WIN95 or
WIN NT then

• Select ASCII under the MODE menu(located in the center of the FTP window)
• Select "send quoted command to remote" from the COMMAND menu

in the FTP window and enter the following command:

SITE RECFM(FB) LRECL(80) BLKSIZE(3200)

3. Re-convert(import) an SPSS portable file to an standard SPSS file on MVS

After transferring the SPSS portable file, you may use the following sample on the
mainframe to re-convert the SPSS portable file to a standard SPSS file.

//iii JOB (aaaa,,class),name
// JCLLIB ORDER=ZABCRUN.PROCLIB
// EXEC SPSS
//TRANS DD DSN=aaaaiii.spss.portable,DISP=SHR,
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200)
//OUT1 DD DSN=aaaaiii.spss.system,DISP=(NEW,CATLG),
// UNIT=FILE,SPACE=(TRK,(s1,s2))
//SYSIN DD *
IMPORT FILE = TRANS
SAVE OUTFILE = OUT1

50

4.Convert the standard SPSS file to a SAS data set on MVS

//iii JOB (aaaa,,class),name
// JCLLIB ORDER=ZABCRUN.PROCLIB
// EXEC SAS
//IN1 DD DSN=aaaaiii.spss.system,DISP=SHR
//SYSIN DD *

/* does not apply to SAS version 5 */

LIBNAME IN1 SPSS ;
LIBNAME OUT1 ’aaaaiii.dsname UNIT=FILE DISP=(NEW,CATLG) SPACE=(TRK,(s1,s2)) ;

PROC CONVERT SPSS = IN1 OUT = OUT1 ;

Or process a standard SPSS file with a SAS DATA Step

//iii JOB (aaaa,bbb,class),name
// JCLLIB ORDER=ZABCRUN.PROCLIB
// EXEC SAS
//IN1 DD DSN=aaaaiii.spssdsname,DISP=SHR
//SYSIN DD *

/* Since SPSS files do not have an internal member name
as in SAS; an SPSS file is referred to as _FIRST_ */

Libname IN1 SPSS ;
DATA TEST ;

 SET IN1._FIRST_ ;

Or process a standard SPSS file with SAS procedures

//iii JOB (aaaa,,class),name
// JCLLIB ORDER=ZABCRUN.PROCLIB
// EXEC SAS
//IN1 DD DSN=aaaaiii.spss.system,DISP=SHR
//SYSIN DD *

LIBNAME IN1 SPSS ;

PROC MEANS DATA = IN1._FIRST_;
VAR variable list ;

PROC CONTENTS DATA=IN1._FIRST_ ;

51

How to… Copy SAS Data Library from a storage device to another

The user is responsible for backing up ones own data sets using SAS procedures.
There are two procedures used to copy SAS data set: PROC COPY and PROC DATASETS.
Refer to the SAS Procedures Guide for details.

Note: A word of caution!
You can use the standard IBM DFSMS/MVS utility IEBGENER to copy or move SAS data sets that
were created with the V6 engine or with the V6SEQ engine. As long as the block size of the
data library that you are copying is not greater than the track capacity of the target
device, a V6 or V6SEQ data library may be transferred between unlike device types(for
example, 3350 to 3390).

However, we caution the user. In a few cases it has been observed that the IBM/MVS utility
did not produce usable copies of SAS data sets. SAS Institute encourages the user to use the
SAS procedures to copy or move SAS data libraries from one file to another or from one
storage device to another.

Example 1:

Copies all members in the SAS data library referenced by libref IN1 on FILE to a library referenced
by the libref OUT1 on a NIH standard tape.

 // (JOB statement)
 // JCLLIB ORDER=ZABCRUN.PROCLIB
 // EXEC SAS
 //SYSIN DD *

LIBNAME IN1 ’aaaaiii.dsname1’;
LIBNAME OUT1 ’aaaaiii.dsname2’ DISP=(NEW,CATLG) UNIT=TAPE

VOL=SER=nnnnnn LABEL=(seqnum,lab) ;

PROC COPY IN = IN1 OUT = OUT1;

Or use the JCL DD statements

// (JOB statement with class B or C)
 /*ROUTE XEQ TAPE
 /*MESSAGE nnnnnn,W
 // JCLLIB ORDER=ZABCRUN.PROCLIB
 // EXEC SAS
 //IN1 DD DSN=aaaaiii.dsname1,DISP=SHR
 //OUT1 DD UNIT=TAPE,DSN=aaaaiii.dsname2,
 // DISP=(NEW,CATLG),VOL=SER=nnnnnn,LABEL=(seqnum,lab)
 //SYSIN DD *

Example 2:

Copy selected member REGION1 in the SAS data library referenced by libref IN1 on FILE to a library
referenced by the libref OUT1 on a NIH standard tape.

 // (JOB statement)
 // JCLLIB ORDER=ZABCRUN.PROCLIB
 // EXEC SAS
 //SYSIN DD *

LIBNAME IN1 ’aaaaiii.dsname1’;
LIBNAME OUT1 ’aaaaiii.dsname2’ DISP=(NEW,CATLG) UNIT=TAPE
 VOL=SER=nnnnnn LABEL=(seqnum,lab) ;

PROC COPY IN = IN1 OUT = OUT1;
SELECT REGION1 ;

 /* to copy selected members use a SELECT statement */

52

How to…convert a version 5 SAS library to version 6

Method 1:

If the SAS library contains many members (e.g. many SAS data sets)
then specify the SELECT statement and name a member.

//iii JOB (aaaa,bbb,A),name
// JCLLIB ORDER=(ZABCRUN.PROCLIB)
// EXEC SAS
//IN1 DD DSN=aaaaiii.dsname1,DISP=SHR
//OUT1 DD DSN=aaaaiii.dsname2,
// DISP=(NEW,CATLG),UNIT=FILE,SPACE=(TRK,(s1,s2),RLSE)
//SYSIN DD *

PROC V5TOV6 IN = IN1 OUT = OUT1 ;
 SELECT SASdatasetname;

PROC CONTENTS DATA = OUT1.SASdatasetname ;

Method 2:

You can also upgrade a SAS data set to version 6 by using PROC COPY. The program below reads
the version 5 SAS data set MEDHIST from the SAS library aaaaiii.STUDY105.SASLIB and creates
a new SAS library that is a version 6 library.

By default, when SAS version 6 runs, it assumes that the new SAS libraries should be stored
as version 6 unless stated otherwise. For this reason you don’t need to specify the version
in the second LIBNAME statement.

 //iii JOB (aaaa,box,class),lastname
 // JCLLIB ORDER=ZABCRUN.PROCLIB
 // EXEC SAS
 //SYSIN DD *

 LIBNAME IN1 ’aaaaiii.STUDY105.SASLIB’ disp=shr;
 LIBNAME OUT1 ’aaaaiii.STUDY105.SASLIB.NEW’ disp=(new,catlg)
 unit=file space=(trk,(1,10));

 PROC COPY IN = IN1 OUT = OUT1;
 SELECT MEDHIST;

53

How to…convert a version 6 SAS library to version 5

//iii JOB (aaaa,bbb,class),name
// JCLLIB ORDER=ZABCRUN.PROCLIB
// EXEC SAS
//IN1 DD DSN=aaaaiii.v6dsname,DISP=SHR
//OUT1 DD DISP=(NEW,CATLG),SPACE=(CYL,(s1,s2),RLSE),UNIT=FILE,
// DSN=aaaaiii.v5dsname,DCB=(DSORG=DA,RECFM=U)
//SYSIN DD *

 /* specify the V5 engine in the LIBNAME statement */
If the SAS library contains many members then specify
the SELECT statement and name a member */

LIBNAME OUT1 V5 ;

PROC COPY IN = IN1 OUT = OUT1 ;

PROC CONTENTS DATA = OUT1._ALL_ ;

54

PROC SORT - Sorting Permanent SAS Data Sets

When sorting a permanent SAS data set, always use the OUT = option on the PROC SORT
statement. Without this option, SAS will attempt to sort the data set on permanent
disk space.

 // (JOB statement)
 // JCLLIB ORDER=ZABCRUN.PROCLIB
 // EXEC SAS
 //ddname DD DSN=aaaaiii.dsname,DISP=SHR
 //SYSIN DD *

 PROC SORT DATA = ddname.sasdsname OUT=newsasdsname ;

55

PROC CONTENTS and PROC DATASETS Procedures

There are two SAS procedures that examine the descriptor portion of a SAS data set.
Whenever a user creates a permanent SAS data set, documentation should also be
prepared. The documentation should provide sufficient means for someone to
determine what information the file contains and how to get it. Both the PROC
CONTENTS and PROC DATASETS procedures have some nice ways to supplement hand-
prepared documentation.

The CONTENTS procedure lists the names of SAS data sets in a library and
information from the directory of a SAS data set. The main CONTENTS results are
presented in a table, showing in alphabetical order by variable name each
variable’s type and length, position in the SAS data set vector, permanent format
and informat if any, and label if any.

PROC CONTENTS Procedure

Examples:

(1) Print the contents of a temporary SAS data set called TEST1

PROC CONTENTS DATA = TEST1;

(2) Print the contents of a permanent SAS data set called MASTER

LIBNAME libref ’aaaaiii.dsname’ ;

PROC CONTENTS DATA = libref.MASTER;

(3) If you do not remember the second-level name of a SAS data set, use the _ALL_
SAS keyword.

LIBNAME libref ’aaaaiii.dsname’ ;

PROC CONTENTS DATA = libref._ALL_;

56

PROC DATASETS Procedure

With Version 6 of the SAS System, the DATASETS procedure was made to subsume the
functions of several utility procedures including the CONTENTS procedure. Note that
the CONTENTS statement of the DATASETS procedure provides the same function as the
CONTENTS procedure.

Examples:

(1) Obtain a directory of all members in a SAS library

LIBNAME libref ’aaaaiii.dsname’ ;
PROC DATASETS LIBRARY = libref ;

LIBRARY = libref processes the permanent SAS library. If omitted, the
default library WORK is processed.

If you do not remember the second-level name of a SAS data set, use the
ALL SAS keyword.

LIBNAME libref ’aaaaiii.dsname’ ;
PROC DATASETS LIBRARY = libref ;

CONTENTS DATA = libref._ALL_ ;

The PROC DATASETS procedure
• lists, renames, and deletes SAS files see the SAS Procedures Guide

• alters variable names in the SAS data set (cannot alter a variable’s
 type or length) see the SAS Procedures Guide

• cannot be used with SAS libraries on tape

• provides all the capabilities of the APPEND, CONTENTS, and COPY procedures

• enhancements include options that assign, change, and remove passwords for
 members of SAS data libraries.

Note:
The DATASETS procedure provides all the capabilities of the APPEND, CONTENTS, and
COPY procedures, as well as the customary PROC DATASETS capabilities. The APPEND,
CONTENTS, and COPY procedures continue to be supported, so existing SAS programs
that use these procedures do not require modifications.

57

Various Statements Used with the PROC DATASETS Procedure

The PROC DATASETS procedure provides many functions by using the CONTENTS, CHANGE,
and DELETE statements.
Please see a detailed summary of the PROC DATASETS functions in the SAS manual: SAS
Procedures Guide

CONTENTS statement

Purpose: To list the contents of a SAS data set

Example 1:

LIBNAME IN1 ’WXYZABC.PERM.SASDATA’ ;
PROC DATASETS LIBRARY = IN1 ;

CONTENTS DATA = SMOKERS ;

Example 2:

LIBNAME IN1 ’WXYZABC.PERM.SASDATA’ ;
PROC DATASETS LIBRARY = IN1 ;
 CONTENTS DATA = IN1._ALL_ ;

When you specify the name of a member, you get a report on that member. When
you specify _ALL_ , you get information about all members.

CHANGE Statement

Purpose: To rename a SAS data set

General Form: LIBNAME libref ’aaaaiii.dsname’ ;
PROC DATASETS LIBRARY = libref ;

CHANGE oldname1 = newname1 ;
Example:

NOTE: Specify option DISP=OLD in the LIBNAME statement to rename or delete
SAS files.

LIBNAME IN1 ’WXYZABC.PERM.SASDATA’ DISP=OLD ;
PROC DATASETS LIBRARY = IN1 ;
 CHANGE SMOKERS = NOSMOKER ;

DELETE statement

Purpose: To delete selected member of a SAS data library.

General Form: LIBNAME libref ’aaaaiiii.dsname’ DISP=OLD ;
PROC DATASETS LIBRARY = libref ;
 DELETE member list/options ;

Example:

NOTE: Specify option DISP=OLD in the LIBNAME statement to rename or delete
SAS files.

LIBNAME IN1 ’WXYZABC.PERM.SASDATA’ DISP=OLD;
PROC DATASETS LIBRARY = IN1 ;
 DELETE PLACEBO ;

58

SAS Format Library

User-written formats and informats are stored in a type of SAS file called a
catalog.

User-written informats and formats are either temporary or permanent, depending on
whether they are stored in a temporary or permanent catalog.

Temporary Formats and Informats:

Formats and informats are temporary when you do not specify the LIBRARY = option in
the PROC FORMAT statement. By default, the user-defined formats are stored in a
temporary catalog named WORK.FORMATS. Consequently these formats disappear when SAS
terminates. Therefore, you can use temporary informats and formats only in the same
SAS job or session in which they are created.

Example:

PROC FORMAT ; /* No LIBRARY = option, so formats and informats
stored in the catalog WORK.FORMATS */

Permanent Formats and Informats:

Permanent format catalogs can be stored on disk, the MSS, or tape, but they must be
used from disk or the MSS.

Example 1:

LIBNAME LIBRARY ’aaaaiii.dsname’ DISP=(NEW,CATLG) SPACE=(TRK,(s1,s2)) UNIT=FILE
;

PROC FORMAT LIBRARY=LIBRARY ; /* Formats or informats stored in a catalog
named FORMATS in the library LIBRARY.
It is recommended, but not required, that
you use the word LIBRARY as the libref */

Example 2:

LIBNAME abc ’aaaaiii.dsname’ DISP=(NEW,CATLG) SPACE=(TRK,(s1,s2)) UNIT=FILE;

PROC FORMAT LIBRARY= abc ; /* Formats or informats stored in a catalog
named FORMATS in the library abc. If there
isn’t a catalog named FORMATS in the library
abc, the SAS System creates one.*/

Example 3:

LIBNAME out1 ’aaaaiii.dsname’ DISP=(NEW,CATLG) SPACE=(TRK,(s1,s2)) UNIT=FILE;

PROC FORMAT LIBRARY= way.cool ; /* Formats or informats stored in a
catalog named cool in the library
way */

59

A Sampling of Programs to Create, Use and Convert SAS Format
Libraries

Create a permanent format catalog on disk

 // (JOB statement)
 // JCLLIB ORDER=ZABCRUN.PROCLIB
 // EXEC SAS
 //LIBRARY DD UNIT=FILE,DISP=(NEW,CATLG),
 // DSN=aaaaiii.dsname,SPACE=(TRK,(s1,s2))
 //SYSIN DD *

PROC FORMAT LIBRARY=LIBRARY ;
value format name
 (enter specifications)

 ;

 • Or with the LIBNAME statement

 // (JOB statement)
 // JCLLIB ORDER=ZABCRUN.PROCLIB
 // EXEC DSSCR,NAME=’aaaaiii.dsname’
 // EXEC SAS
 //SYSIN DD *

LIBNAME LIBRARY ’aaaaiii.dsname’ UNIT=FILE DISP=(NEW,CATLG)
SPACE=(TRK,(s1,s2)) ;

PROC FORMAT LIBRARY=LIBRARY ;
value format name
 (enter specifications)

 ;

Use formats from a permanent format catalog on disk

Permanent formats and informats can be used in the program that creates them and in
subsequent SAS jobs or sessions.
In DATA and PROC steps following the PROC FORMAT step, the SAS System searches the
LIBRARY library for the FORMATS catalog file.

// (JOB statement)
 // JCLLIB ORDER=ZABCRUN.PROCLIB
 // EXEC SAS
 //LIBRARY DD DSN=aaaaiii.dsname,DISP=SHR
 //SYSIN DD *

PROC FORMAT LIBRARY=LIBRARY ;

 • Or with the LIBNAME statement

 // (JOB statement)
 // JCLLIB ORDER=ZABCRUN.PROCLIB
 // EXEC SAS
 //SYSIN DD *

LIBNAME LIBRARY ’aaaaiii.dsname’ ;
PROC FORMAT LIBRARY=LIBRARY FMTLIB ;

If you wish to review the entries in the format library the FMTLIB option may be
used to display the contents of a permanent format catalog

60

A Sampling of Programs to Create, Use, and Convert Version 5 SAS
Format Libraries

Reminders to those who still have permanent Version 5 format libraries.

• Permanent Version 5 format libraries are partitioned data sets.
• To copy version 5 format libraries, use PROC PDSCOPY.
• While Version 5 format libraries can be stored on tape, they must be on disk to

be used in a SAS program.
• Version 5 formats can be used without conversion in Version 6 programs.
• Version 6 formats cannot be used in Version 5 programs.

Create a permanent Version 5 SAS format library on disk using a Version 5 program

 // (JOB statement)
 // JCLLIB ORDER=ZABCRUN.PROCLIB
 // EXEC SAS518
 //SASLIB DD UNIT=FILE,DISP=(NEW,CATLG),
 // DSN=aaaaiii.dsname,SPACE=(TRK,(s1,,d1))
 //SYSIN DD *

PROC FORMAT LIBRARY = SASLIB ;

where ’d1,’ the directory parameter, is set equal to the number of formats
output divided by 4.

Use permanent Version 5 SAS format library on disk

 // (JOB statement)
 // JCLLIB ORDER=ZABCRUN.PROCLIB

// EXEC SAS
 //SASLIB DD DSN=aaaaiii.dsname,DISP=SHR
 //SYSIN DD *

PROC FORMAT LIBRARY = SASLIB ;

Version 5 SAS data sets and SAS format libraries can be used without conversion in
a Version 6 program. However, you may choose to convert the Version 5 SAS format
library to Version 6 SAS format library using the V5TOV6 procedure.

PROC V5TOV6 procedure converts Version 5 SAS format library to Version 6 SAS format
library

//iii JOB (aaaa,,E),name
// JCLLIB ORDER=ZABCRUN.PROCLIB
// EXEC SAS
//SASLIB DD DSN=aaaaiii.v5sas.formats,DISP=SHR
//LIBRARY DD UNIT=FILE,DISP=(NEW,CATLG),
// DSN=aaaaiii.v6sas.formats,SPACE=(TRK,(s1,s2))
//SYSIN DD *

PROC V5TOV6 FORMAT=SASLIB OUT=LIBRARY;

61

How to… Transform a Version 5 SAS Format Library to a Version 6 and
Download to the PC Environment .

1. Convert Version 5 SAS format library to Version 6 SAS format library
2. Create a SAS transport file
3. Transfer(download) the SAS transport file
4. Re-convert(import) the SAS transport file to a Version 6 SAS format library on the PC
1. Convert Version 5 SAS format library to Version 6 SAS format library

//iii JOB (aaaa,,E),name
// JCLLIB ORDER=ZABCRUN.PROCLIB
// EXEC SAS
//SASLIB DD DSN=aaaaiii.v5sas.formats,DISP=SHR
//LIBRARY DD UNIT=FILE,DISP=(NEW,CATLG),
// DSN=aaaaiii.v6sas.formats,SPACE=(TRK,(s1,s2))
//SYSIN DD *
PROC V5TOV6 FORMAT=SASLIB OUT=LIBRARY;

2. Create SAS transport file

//iii JOB (aaaa,,E),name
// JCLLIB ORDER=ZABCRUN.PROCLIB
// EXEC SAS
//STD1 DD DSN=aaaaiii.v6sas.formats,DISP=SHR
//TRANFILE DD DSN=aaaaiii.transport.file,DISP=(NEW,CATLG),
// UNIT=FILE,DCB=(RECFM=FB,LRECL=80,BLKSIZE=8000),
// SPACE=(TRK,(s1,s2))
//SYSIN DD *
PROC CPORT LIBRARY=STD1 FILE=TRANFILE ;

• Or with the LIBNAME statement

LIBNAME STD1 ’aaaaiii.v6sas.formats’;
FILENAME TRANFILE ’aaaaiii.transport.file’

 UNIT=FILE DISP=(NEW,CATLG) SPACE=(TRK,(s1,s2))
 RECFM=FB LRECL=80 BLKSIZE=8000 ;

PROC CPORT LIBRARY=STD1 FILE=TRANFILE ;

3. Transfer(download) the SAS transport file

a) if you transfer the file by way of a software communication package(like KERMIT, ProComm or
other) to the PC environment be certain to specify the following parameters...

SET DATA BINARY
SET RECFM FB
SET LRECL 80
SET BLKSIZE 8000

c) if you transfer the SAS transport file via FTP and you are using WIN95 or
 WIN NT then

• Select Binary under the MODE menu(that’s located in the center of the FTP
WINDOW)

• Select "send quoted command to remote" from the COMMAND menu in the FTP
window and enter the following command:

SITE RECFM(FB) LRECL(80) BLKSIZE(8000)

4. Re-convert(import) the SAS transport file to a SAS format library on the PC
After transferring the SAS transport file, you may use the following sample on the PC
to re-convert(import) the SAS transport file to a SAS format library.
 FILENAME TRANFILE ’C:\mydir\filename’;

LIBNAME OUT1 ’C:\mydir’ ;
PROC CIMPORT LIBRARY = OUT1 INFILE = TRANFILE ;
RUN;

62

The PROC CATALOG Procedure and SAS Format Libraries

SAS member-type catalog is used by the SAS software products Base SAS, SAS/FSP,
SAS/AF, SAS/IML, and SAS/GRAPH. In Base SAS the PROC CATALOG procedure is used to
manage entries in SAS member-type catalogs.

Answers to commonly asked questions relating to SAS Format
Libraries(member-type catalog).

How to… add to or modify a SAS Format Library

And in most cases you do not need to re-run the original program that generated the
SAS format library.

There is no problem with adding or modifying a format library, however, there is a
problem modifying an entry(i.e. a format) within the format library simply because
a format is a compiled entry.

Write a new SAS program using the PROC FORMAT procedure and reference the
original SAS format library in the LIBNAME statement.

LIBNAME OLD ’aaaaiii.DSNAME’ DISP = (OLD,CATLG) UNIT=FILE ;

PROC FORMAT LIBRARY= OLD ;
 VALUE /* enter the format name
 and the formats */
 ;

a) If you create a format with the same format name currently in the
library, then it will simply over-write it.

b) If the format name is not the same, then it will be added to the
permanent SAS format library.

c) In some cases you may encounter a limitation…one cannot increase the SPACE
allocation to a permanent SAS Library on MVS.

How to… combine SAS Format Libraries

You may want to create a new SAS format library and then combine the two
libraries, that is the original with the new one.

 Example:

 Libname library ’aaaaiii.FMTSET2’;
 Libname combine ’aaaaiii.FMTSET1’;
 proc catalog cat=library.FORMATS;
 copy out=combine.FORMATS;

63

How to…use formats created in a permanent SAS format library

Method 1:

Use formats created in a permanent SAS format library by including a LIBNAME
statement with a libref LIBRARY

// (JOB statement)
// JCLLIB ORDER=ZABCRUN.PROCLIB
// EXEC SAS
//SYSIN DD *

libname library ’aaaiii.dsname’;
 proc freq data=library.demog;
 table race*sex;
 format race race. sex sex.;

Method 2:

In general, you can use any libref in the LIBNAME statement.
If you do not use the libref LIBRARY then use the SAS option FMTSEARCH=
to specify the libref you used.

// (JOB statement)
// JCLLIB ORDER=ZABCRUN.PROCLIB
// EXEC SAS
//SYSIN DD *

libname in ’aaaaiii.dsname’;
 options fmtsearch = (in);
 proc freq data=in.demog;

table race*sex;
format race race. sex sex.;

Method 3:

To access more than one format library include one LIBNAME statement
for each library then list the librefs after the FMTSEARCH= option separated by
spaces.

// (JOB statement)
// JCLLIB ORDER=ZABCRUN.PROCLIB
// EXEC SAS
//SYSIN DD *

 libname in1 ’aaaaiii.dsname1’;
 libname in2 ’aaaaiii.dsname2’;
 options fmtsearch = (in1 in2);

64

PROC PRINTTO Procedure

PROC PRINTTO is used to route the output of SAS procedures to an external file
rather than to the SAS procedure output file. The following program will put the
results of the PROC PRINT into an external file called ’dsname1’ and the results of
the PROC MEANS in the usual SAS procedure output file.

 // (JOB statement)
 // JCLLIB ORDER=ZABCRUN.PROCLIB
 // EXEC DSSCR,NAME=’aaaaiii.dsname1’
 // EXEC SAS
 //ddname1 DD UNIT=FILE,DISP=(NEW,CATLG),
 // DSN=aaaaiii.dsname1,SPACE=(TRK,(s1,s2)),
 // DCB=(RECFM=FB,LRECL=len,BLKSIZE=b)
 //ddname2 DD DSN=aaaaiii.dsname2,DISP=SHR

//SYSIN DD *

 PROC PRINTTO NEW FILE=ddname1 ;

PROC PRINT DATA = ddname2.sasdsname ;

PROC PRINTTO ;

 PROC MEANS DATA = ddname2.sasdsname ;

NOTE:
PROC PRINTTO procedure will not be applicable in Version 7.

In Version 7 the Output Delivery System(ODS), a new SAS subsystem, provides
capabilities for displaying and controlling the output from the SAS procedures.
Therefore, Version 7 release of SAS will not have the PROC PRINTTO procedure.

65

Efficient SAS Programming - A Few Tips

How to… save memory, CPU time, I/O operations, storage, and programmer time.

1. Read only the fields you need.
When you read an external file, you spend CPU time to read a field. If you use list
input without pointer controls, you must read every field in an external file. When
you use list input with pointer controls, column input or formatted input, you
exclude unneeded variables from your data set and spend less CPU time reading fields
you actually do not need.

2. Store data in SAS data sets.
When you need to use the SAS System repeatedly to analyze or manipulate any
particular group of data, create a permanent SAS data set instead of reading the raw
data each time to create a temporary SAS data set.

3. Process only the variables you need.
When you refer to an SAS data set using the SET, MERGE, or UPDATE statement, select
the variables you need using the DROP= or KEEP= data set option rather than the DROP
or KEEP statement. You can use the DROP or KEEP statement in combination with the
DROP= or KEEP= data set option to eliminate variables created in the current DATA
step from the output data set.

4. Take advantage of SAS procedures.
Use procedures to examine your data and know the characteristics of your data. For
instance, use (a) PROC CHART with the HBAR statement to see the big picture,
(b) PROC PLOT to spot relationships among data variables, (c) PROC MEANS to see
variable ranges and limits, (d) Output SAS data sets from CORR, FREQ, and MEANS
procedures as input to other procedures to avoid reading a master data set again.

5. Use a WHERE statement or a WHERE= data set option.
Use a WHERE statement or a WHERE= data set option to run any procedure on a subset of
a SAS data set. When you want to run a procedure with only the observations in a data
set that meet specific conditions, use the WHERE statement to select those
observations rather than creating a subset data set and then running the procedure.

6. If appropriate, specify the reserved name _NULL_ in the DATA statement to have the
SAS System go through a DATA step without creating a SAS data set.
For instance, you may need to write reports with PUT statements.

7. Sorting is relatively expensive in terms of CPU time and may require large work
space. Therefore, plan sorting to reduce the number of sorts.

a) If appropriate, use two or more variables in the BY statement of one PROC SORT
step rather than using two PROC SORT steps, each with one BY variable.

b) If a procedure supports both the CLASS statement and the BY statement, use the
CLASS statement to eliminate the need for sorted input.

c) Remove unneeded variables and observations either in a DATA step before the PROC
SORT step, or use the DROP= or KEEP= data set option and the WHERE statement in
the PROC SORT step.

6. Programs that fail due to preventable errors waste resources.

Using the OBS= option with the INFILE statement to read a test raw file, and
the OBS= data set option with the SET statement allows the user to use a subset
of actual production data to test a program.

9. If you do not plan to perform arithmetic operations on variables containing
digits, store the variables as character rather than numeric.

66

10. Use the LENGTH statement to reduce the storage space for variables in SAS data sets.

Use the LENGTH statement to assign lengths to your numeric variables. Numeric values (no
matter how many digits they contain) are stored as floating point numbers in 8 bytes of
storage unless you specify another length. For most applications, 4 bytes is sufficient.
Changing from 8 to 4 bytes will half the storage requirements and speed up data transfer.
When numeric variables are assigned lengths less than 8 bytes, all data step calculations
are still done with double precision arithmetic.
You can also assign lengths to character variables; however, if they were read in with
formats or columns specified, they will already have their lengths defined.

Purpose: To define the number of bytes used to store values of variables in the SAS
data set.

General Form: LENGTH variable(s) [$] length... [DEFAULT=n] ;
| | |
(A) (B) (C)

(A) $ indicates the preceding variable or variables are character
variable(s)

(B) Length In the MVS environment this constant represents a range from 2 to
in 8 for numeric variables and 1 to 200 for character variables
Bytes In the Windows, Mac, and UNIX environments this constant

represents a range from 3 to 8 for numeric variables and 1 to 200 for
character variables

(C) n changes the default number of bytes used for storing the values of
newly created numeric variables from 8 (the default length) to the
value of n(n can range from 2 to 8 or 3 to 8, depending on the host
system)

The following table shows the largest integer represented for the corresponding Length in
Bytes. Limits shown in this table are for the MVS operating system. Limits are different
for Windows, Mac, and Unix. (Please refer to the appropriate SAS Companion guide).

Length in Bytes Largest Integer Represented
2 255
3 65,535
4 16,777,215
5 4,294,967,295
6 1,099,511,627,775
7 281,474,946,710,655
8 72,057,594,037,927,935

For example, if you know that a numeric variable always has values between 0 and 100, you
can use a length of 2 to store the number and save space on storage.
Note:
You can safely use the LENGTH statement when the values for the variable are integers.
For non-integers (fractional values) it is highly recommended that you do not use the
LENGTH statement.
Advantages:
• Save space on storage
• Saves time in reading and writing the data
• Changes SAS defaults for storing the values

67

How to Invoke the SAS Macro Facility

To invoke the Macro Facility in SAS use the OPTINS=’MACRO’ option in the
// EXEC SAS statement

 // EXEC SAS,OPTIONS=’MACRO’

For more information about the SAS Macro Facility, refer to the SAS Guide to Macro
Processing.

68

How to Use Curly Braces in a SAS Program at NIH

The use of curly braces with explicitly sub-scripted arrays is not supported at
NIH. You must use parentheses.

For instance, PROC IML procedure requires curly braces. To use curly braces one
must type the following WYLBUR commands before entering the program:

SET MAP #’8BC0’
SET MAP #’9BD0’

If you use the PROC IML procedure often, enter these two SET commands in your
WYLBUR PROFILE.

? USE PROFILE CLEAR (CR)
? LIST (CR)
? COLLECT
 1.? SET MAP #’8BC0’
 2.? SET MAP #’9BD0’
 3.? BREAK **
? SET PROFILE
? PROFILE DATA SET SAVED AND CATALOGUED

If you find the following ERROR message in the SAS Log of a PROC IML Step,
"ERROR 200-322: The symbol is not recognized", correct the problem with these
instructions.

1) Return to the SAS program
2) Use the WYLBUR modify command:
 ? MOD (and re-enter the curly braces)

2) Re-save the SAS program
3) SET the WYLBUR PROFILE… use the instructions shown(above)
5) 5) Re-run the SAS program

